14、等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d<0.若存在正整數(shù)m(m≥3),使得am=Sm,則當(dāng)n>m(n∈N+)時(shí),有an
sn(填“>”、“<”、“=”)
分析:根據(jù)am=Sm,利用等差數(shù)列的前m項(xiàng)和的公式化簡(jiǎn)后,解得Sm-1=0,有因?yàn)楣頳小于0,所以得到從am開(kāi)始到an的各項(xiàng)都為負(fù)數(shù),然后列舉出Sn的各項(xiàng),根據(jù)前m項(xiàng)和為0,以后的項(xiàng)都為負(fù)數(shù),根據(jù)兩負(fù)數(shù)比較大小的方法即可得到Sn<an
解答:解:由am=Sm=a1+a2+…+am-1+am=Sm-1+am
得到Sm-1=0,又d<0,得到am<0,an<0,且am到an所有項(xiàng)都小于0,
則Sn=a1+a2+…+am-1+am+am+1+…+an=am+am+1+…+an<an
故答案為:>
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項(xiàng)和為Rn,若Rn<λ對(duì)n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前2006項(xiàng)的和S2006=2008,其中所有的偶數(shù)項(xiàng)的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n.若對(duì)一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案