分析 (1)由拋物線定義得:$\frac{p}{2}+\frac{p}{2}=2$,由此能求出拋物線C1的方程.
(2)設(shè)直線AM,AN的斜率分別為k1,k2,將lAM:y-1=k1(x-2)代入x2=4y,得:x2-4k1x+8k1-4=0,由此利用根的判別式、韋達定理、直線與圓相切、點到直線距離公式,能求出結(jié)果.
解答 解:(1)由拋物線定義可得:$\frac{p}{2}+\frac{p}{2}=2$,∴p=2,
∴拋物線C1的方程為:x2=4y.…(4分)
(2)設(shè)直線AM,AN的斜率分別為k1,k2,
將lAM:y-1=k1(x-2)代入x2=4y,得:
x2-4k1x+8k1-4=0,$△=16({k}_{1}-1)^{2}$>0,
∴k1∈R,且k1≠1,
由韋達定理得:xM=4k1-2,同理xN=4k2-2,…(6分)
∴${k}_{MN}=\frac{{y}_{M}-{y}_{N}}{{x}_{M}-{x}_{N}}$=$\frac{1}{4}$(xM+xN)=k1+k2-1,…(8分)
又∵直線lMN:y-1=k1(x-2)與圓相切,∴$\frac{|a+2{k}_{1}-1|}{\sqrt{1+{{k}_{1}}^{2}}}$,
整理可得:$3{{k}_{1}}^{2}+4{k}_{1}(a-1)+{a}^{2}-2a=0$,
同理$3{{k}_{2}}^{2}+4{k}_{2}(a-1)+{a}^{2}-2a=0$,…(10分)
∴k1,k2是方程3k2+4k(a-1)+a2-2a=0的兩個根,…(11分)
∴k1+k2=-$\frac{4(a-1)}{3}$,代入kMN=k1+k2-1=-1,
解得a=1.…(12分)
點評 本題考查拋物線方程的求法,考查實數(shù)值的求法,是中檔題,解題時要認真審題,注意根的判別式、韋達定理、直線與圓相切、點到直線距離公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
非嚴重污染 | 嚴重污染 | 合計 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計 | 85 | 15 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com