【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:∵函數(shù)f(x)=bax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,8),B(3,32),
∴ ,
解得a=2,b=4,
∴f(x)=4(2)x=2x+2
(2)解:設(shè)g(x)=( )x+( )x=( )x+( )x,
y=g(x)在R上是減函數(shù),
∴當(dāng)x≤1時(shí),g(x)min=g(1)= .
若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時(shí)恒成立,
即m≤
【解析】(1)由函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,8),B(3,32),知 ,由此能求出f(x).(2)設(shè)g(x)=( )x+( )x=( )x+( )x ,
則y=g(x)在R上是減函數(shù),故當(dāng)x≤1時(shí),g(x)min=g(1)= .由此能求出實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來編制個(gè)花籃, 個(gè)花盆.
(Ⅰ)列出滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)若出售一個(gè)花籃可獲利300元,出售一個(gè)花盤可獲利200元,那么怎樣安排花籃與花盆的編制個(gè)數(shù),可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域?yàn)閰^(qū)間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域?yàn)閰^(qū)間(0,+∞),求a的取值范圍,使f(x)在定義域內(nèi)是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)用定義證明函數(shù)在上的單調(diào)性;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】荊州市政府為促進(jìn)淡水魚養(yǎng)殖業(yè)的發(fā)展,將價(jià)格控制在適當(dāng)?shù)姆秶鷥?nèi),決定對淡水魚養(yǎng)殖提供政府補(bǔ)貼.設(shè)淡水魚的市場價(jià)格為元/千克,政府補(bǔ)貼為元/千克.根據(jù)市場調(diào)查,當(dāng)時(shí),淡水魚的市場日供應(yīng)量千克與市場日需求量千克近似滿足關(guān)系;.當(dāng)市場日供應(yīng)量與市場日需求量相等時(shí)的市場價(jià)格稱為市場平衡價(jià)格.
(1)將市場平衡價(jià)格表示為政府補(bǔ)貼的函數(shù),并求其定義域;
(2)為使市場平衡價(jià)格不高于10元/千克,政府補(bǔ)貼至少為每千克多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè)是的導(dǎo)函數(shù),求函數(shù)的極值;
(2)是否存在常數(shù),使得時(shí), 恒成立,且有唯一解,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+lnx﹣ ,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個(gè)零點(diǎn);
(3)若k為整數(shù),且當(dāng)x>2時(shí),f(x)>0恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com