【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
參考公式:,其中
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1);(2)見解析
【解析】
(1)根據(jù)莖葉圖可知成績不低于分的學(xué)生共有人,其中成績?yōu)?/span>分的有人,先求解出成績?yōu)?/span>分的同學(xué)沒有人被抽中的概率,利用對立事件的概率公式求得結(jié)果;(2)根據(jù)莖葉圖補全列聯(lián)表,根據(jù)公式計算得到,對比臨界值表得到結(jié)果.
(1)由莖葉圖可知,甲班中成績不低于分的學(xué)生共有人,其中成績?yōu)?/span>分的有人
記:“成績?yōu)?/span>分的同學(xué)至少有一名被抽中”為事件
(2)由莖葉圖可補全列聯(lián)表如下:
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
有的把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用1,2,…,8這八個數(shù)碼所組成的 全部無重復(fù)數(shù)字的八位數(shù)中,能被11整除的有______個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
1求圓C的普通方程和直線l的直角坐標(biāo)方程;
2設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)按一定規(guī)律排成了如圖所示的三角形數(shù)表
設(shè)是位于這個三角形數(shù)表中從上到下數(shù)第行、從左到右數(shù)第個數(shù),如,若,則____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將四個編號為1,2,3,4的相同小球放入編號為1,2,3,4的四個盒子中,
(1)若每個盒子放一個小球,求有多少種放法;
(2)若每個盒子放一球,求恰有1個盒子的號碼與小球的號碼相同的放法種數(shù);
(3)求恰有一個空盒子的放法種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,直線為平面內(nèi)的動點,過點作直線的垂線,垂足為點,且.
(1)求動點的軌跡的方程;
(2)過點作兩條互相垂直的直線與分別交軌跡于四點.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.
(1)當(dāng)時,求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運動且P在線段OM上時,求P點軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權(quán)威的檢測機構(gòu)在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款,荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經(jīng)遠銷至中國.A地區(qū)聞訊后,立即組織相關(guān)檢測員對這8款品牌的奶粉進行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測員分別負責(zé)進行檢測,每人至少抽檢1家商店,且檢測過的商店不重復(fù)檢測,則甲檢測員檢測2家商店的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com