【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
【答案】(1).(2)13.
【解析】試題分析:(1)根據(jù)等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用裂項(xiàng)相消法求和后,解不等式即可得結(jié)果.
試題解析:(1)設(shè)等差數(shù)列的首項(xiàng)為,公差為,依題意有,
即,
由,解得,所以.
(2)由(1)可得,
所以.
解,得,
所以的最大值為13.
【方法點(diǎn)晴】本題主要考查等差數(shù)列、等比數(shù)列的綜合運(yùn)用以及裂項(xiàng)相消法求和,屬于中檔題.裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項(xiàng)技巧:①;②
;③;
④ ;此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】治理大氣污染刻不容緩,根據(jù)我國分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級(jí),對(duì)應(yīng)于空氣質(zhì)量指數(shù)的六個(gè)級(jí)別,指數(shù)越大,級(jí)別越高,說明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)小于時(shí),可以戶外運(yùn)動(dòng);空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶外活動(dòng),以下是某市年月中旬的空氣質(zhì)量指數(shù)情況:
時(shí)間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
AQI | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
(1)求月中旬市民不適合進(jìn)行戶外活動(dòng)的概率;
(2)一外地游客在月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的一個(gè)頂點(diǎn)為A(2,3),兩條高所在直線方程為x-2y+3=0和x+y-4=0,求△ABC三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程,其中=,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式e2x﹣alnxa恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四邊形是直角梯形,,,其中是上的一點(diǎn),四邊形是菱形,滿足,沿將折起,使
(1)求證:平面平面
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com