2.已知tanα=3,求$\frac{si{n}^{2}(π-α)+4sinαcosα}{2co{s}^{2}(π+α)+3co{s}^{2}(\frac{π}{2}-α)}$ 的值.

分析 利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡(jiǎn)所求,利用已知即可計(jì)算求值.

解答 解:∵tanα=3,
∴$\frac{si{n}^{2}(π-α)+4sinαcosα}{2co{s}^{2}(π+α)+3co{s}^{2}(\frac{π}{2}-α)}$=$\frac{si{n}^{2}α+4sinαcosα}{2co{s}^{2}α+3si{n}^{2}α}$=$\frac{ta{n}^{2}α+4tanα}{2+3ta{n}^{2}α}$=$\frac{{3}^{2}+4×3}{2+3×{3}^{2}}$=$\frac{21}{29}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知平面上三點(diǎn)A、B、C滿足|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=$\sqrt{5}$,|$\overrightarrow{CA}$|=2$\sqrt{2}$,則$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值等于-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,若S1=1,S2=3,則S3=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若一元二次不等式ax2+bx+c>0(a≠0)的解集是(-$\frac{1}{2}$,2),則下列不成立的為( 。
A.a<0B.a+b+c>0C.b<0D.c>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(1-$\frac{1}{x}$)(1+x)4的展開式中含x2項(xiàng)的系數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若cos(π-θ)=$\frac{1}{3}$,且θ為第二象限角,則sin($\frac{3π}{2}$-θ)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),則tanα=( 。
A.-1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(sinx,(m-$\frac{3}{8}$)sinx),$\overrightarrow$=(sin3x,8sinx)且f(x)=$\overrightarrow{a}•\overrightarrow$,求函數(shù)y=f(x)的最大值g(m),并解不等式g(m)<5-|m-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為4,設(shè)右焦點(diǎn)為F,過原點(diǎn)O的直線l與橢圓C交于A,B兩點(diǎn),線段AF的中點(diǎn)為M,線段BF的中點(diǎn)為N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 若離心率e=$\frac{1}{2}$,求橢圓C的方程;
(Ⅱ) 求橢圓C的長軸長的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案