分析 由條件可得,(x-b){(1-3m)x2+[m(2a+b)-(a+b)]x+ab}≥0恒成立,可得m=$\frac{1}{3}$,故(x-b)[(a+2b)x-3ab]≤0恒成立.再利用二次函數(shù)的性質(zhì)求出a-b=0即可.
解答 解:∵f(x)≥mxf′(x),
∴(x-a)(x-b)2 ≥m•x(x-b)[3x-(2a+b)],
∴(x-b){(1-3m)x2+[m(2a+b)-(a+b)]x+ab}≥0.
若m≠$\frac{1}{3}$,則左邊是一個(gè)一次因式,乘以一個(gè)恒正(或恒負(fù))的二次三項(xiàng)式,或者是三個(gè)一次因式的積,無(wú)論哪種
情況,總有一個(gè)一次因式的指數(shù)是奇次的,這個(gè)因式的零點(diǎn)左右的符號(hào)不同,因此不可能恒非負(fù),不滿足條件.
∴m=$\frac{1}{3}$,
∴(x-b)[(a+2b)x-3ab]≤0恒成立.
若a+2b=0,則有a=-2b,∴a=b=0,(舍)
若a+2b≠0,則 x1=b,x2=$\frac{3ab}{a+2b}$,且 b=$\frac{3ab}{a+2b}$.
∵b≠0,則 $\frac{3a}{a+2b}$=1,∴a=b,即a-b=0且b<0.
綜上可得,m=$\frac{1}{3}$,a-b=0,
∴2m+a-b=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.
點(diǎn)評(píng) 本題主要考查函數(shù)在某點(diǎn)取得極值的條件,函數(shù)的恒成立問(wèn)題,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,-$\frac{1}{2}$] | B. | (-∞,1) | C. | [$\frac{1}{2}$,1) | D. | (-1,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com