A. | (-1,-$\frac{1}{2}$] | B. | (-∞,1) | C. | [$\frac{1}{2}$,1) | D. | (-1,+∞) |
分析 若函數(shù)f(x)=$\sqrt{2x+1}$+k為閉函數(shù),則存在區(qū)間[a,b],在區(qū)間[a,b]上,函數(shù)f(x)的值域為[a,b],即$\left\{\begin{array}{l}{a=\sqrt{2a+1}+k}\\{b=\sqrt{2b+1}+k}\end{array}\right.$,故a,b是方程x2-(2k+2)x+k2-1=0(x$≥-\frac{1}{2}$,x≥k)的兩個不相等的實數(shù)根,由此能求出k的取值范圍.
解答 解:若函數(shù)f(x)=$\sqrt{2x+1}$+k為閉函數(shù),則存在區(qū)間[a,b],
在區(qū)間[a,b]上,函數(shù)f(x)的值域為[a,b],
即$\left\{\begin{array}{l}{a=\sqrt{2a+1}+k}\\{b=\sqrt{2b+1}+k}\end{array}\right.$,
∴a,b是方程x=$\sqrt{2x+1}+k$的兩個實數(shù)根,
即a,b是方程x2-(2k+2)x+k2-1=0(x$≥-\frac{1}{2}$,x≥k)的兩個不相等的實數(shù)根,
①當k$≤-\frac{1}{2}$時,$\left\{\begin{array}{l}{△=[-(2k+2)]-4({k}^{2}-1)>0}\\{f(-\frac{1}{2})=\frac{1}{4}+\frac{1}{2}(2k+2)+{k}^{2}-1≥0}\\{\frac{2k+2}{2}>-\frac{1}{2}}\end{array}\right.$解得-1<k≤$-\frac{1}{2}$,
②當k$>-\frac{1}{2}$時,$\left\{\begin{array}{l}{△=[-(2k+2)]^{2}-4({k}^{2}-1)>0}\\{f(k)={k}^{2}-(2k+2)k+{k}^{2}-1>0}\\{\frac{2k+2}{2}>k}\end{array}\right.$,無解,
綜上,k的取值范圍是(-1,-$\frac{1}{2}$].
故選:A.
點評 本題考查函數(shù)的單調(diào)性及新定義型函數(shù)的理解,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2π}{5}$ | B. | $\frac{3π}{5}$ | C. | $\frac{4π}{5}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<a<c | B. | b<c<a | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (1,-3) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com