(12分)化簡(1)
(2)已知求的值。
科目:高中數學 來源: 題型:解答題
某車間有50名工人,要完成150件產品的生產任務,每件產品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現在把這些工人分成兩組同時工作(分組后人數不再進行調整),每組加工同一中型號的零件.設加工A 型零件的工人人數為x名(x∈N*)
(1)設完成A 型零件加工所需時間為小時,寫出的解析式;
(2)為了在最短時間內完成全部生產任務,x應取何值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設二次函數滿足下列條件:
①當時, 的最小值為0,且恒成立;
②當時,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的實數m(m>1),使得存在實數t,只要當時,就有成立
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在的函數,對任意的、,都有,且當時,.
(1)證明:當時,;
(2)判斷函數的單調性并加以證明;
(3)如果對任意的、,恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)某公園計劃建造一個室內面積為800m2的矩形花卉溫室.在溫室內,沿左、右兩側與后側內墻各保留1m寬的通道。沿前側內墻保留3m寬的空地,中間矩形內種植花卉.當矩形溫室的邊長各為多少時,花卉的種植面積最大?最大種植面積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題共12分)
已知函數的圖象過點,且在內單調遞減,在上單調遞增。
(1)求的解析式;
(2)若對于任意的,不等式恒成立,試問這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了綠化城市,準備在如圖所示的區(qū)域內修建一個矩形PQRC的草坪,且PQ//BC,RQBC。另外的內部有一文物保護區(qū)不能占用,經測量AB="100m," BC="80m," AE="30m," AF=20m,應如何設計才能使草坪的占地面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本小題滿分12分)
今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).
(Ⅰ)求水箱容積的表達式,并指出函數的定義域;
(Ⅱ)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
有一批運動服裝原價為每套80元,兩個商場均有銷售,為了吸引顧客,兩商場紛紛推出優(yōu)惠政策。甲商場的優(yōu)惠辦法是:買一套減4元,買兩套每套減8元,買三套每套減12元,......,依此類推,直到減到半價為止;乙商場的優(yōu)惠辦法是:一律7折。某單位欲為每位員工買一套運動服裝,問選擇哪個商場購買更省錢?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com