7.實(shí)數(shù)x,y,k滿足$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ x≤k\end{array}\right.$,z2=x2+y2,若z2的最大值為13,則k的值為(  )
A.1B.2C.3D.4

分析 由約束條件作出可行域,由z2=x2+y2的幾何意義可知使z2取得最大值的最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),結(jié)合z2的最大值為13列式求得k值.

解答 解:由約束條件$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ x≤k\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x=k}\\{x-y+1=0}\end{array}\right.$,解得:A(k,k+1),
由圖可知,使z2=x2+y2取得最大值的最優(yōu)解為A(k,k+1),
由k2+(k+1)2=13,解得:k=2.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.規(guī)定:f″(x)=(f′(x))′,例如,f(x)=x2,f′(x)=2x,f″(x)=2,設(shè)g(x)=lnx,函數(shù)h(x)=mg″(x)+g′(x)一$\frac{π}{3}$,下列結(jié)論正確的是(  )
A.當(dāng)m∈$(\frac{2}{3},+∞)$時(shí),函數(shù)h(x)無(wú)零點(diǎn)
B.當(dāng)m∈$(-∞,\frac{2}{3})$時(shí),函數(shù)h(x)恰有一個(gè)零點(diǎn)
C.當(dāng)m∈$[0,\frac{2}{3}]$時(shí),函數(shù)h(x)恰有兩個(gè)零點(diǎn)
D.當(dāng)m∈$(-\frac{2}{3},\frac{2}{3})$時(shí),函數(shù)h(x)恰有三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)(1,3)和(-4,-2)在直線2x-y+m=0的兩側(cè),則m的取值范圍是(  )
A.m<1或m>6B.m=1或m=6C.1<m<6D.1≤m≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.復(fù)數(shù)$\frac{2i}{1-i}$=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)  f(x)=2x-x2,則f(-1)=-1;若函數(shù)g(x)=f(x)+k-1有三個(gè)零點(diǎn),則k的取值范圍(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知向量$\overrightarrow{AB}$=(2,x-1),$\overrightarrow{CD}$=(1,-y),其中xy>0,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則$\frac{8x+y}{xy}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i是虛數(shù)單位,若(2-i)•z=i3,則$\overline z$=( 。
A.$\frac{1}{5}$-$\frac{2}{5}$iB.-$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{2}{5}$-$\frac{1}{5}$iD.$\frac{1}{5}$+$\frac{2}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知三角形的三個(gè)頂點(diǎn)A(4,3),B(-1,2),C(1,-3),則△ABC的高CD所在的直線方程是( 。
A.5x+y-2=0B.x-5y-16=0C.5x-y-8=0D.x+5y+14=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.命題“p:?x∈R,x2+2x+a≤0”的否定形式為?x∈R,x2+2x+a>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案