15.如圖,在△ABC中,∠ACB為鈍角,AB=2,BC=$\sqrt{2}$,A=$\frac{π}{6}$,D為AC延長線上一點,且CD=$\sqrt{3}+1$.
(Ⅰ)求∠BCD的大;
(Ⅱ)求BD,AC的長.

分析 (Ⅰ)利用正弦定理求出∠BCD的正弦函數(shù)值,然后求出角的大;
(Ⅱ)在△BCD中,由余弦定理可求BD的長,然后求出AC的長.

解答 (本小題滿分12分)
解:(Ⅰ)在△ABC中,因為AB=2,A=$\frac{π}{6}$,BC=$\sqrt{2}$,
由正弦定理可得$\frac{AB}{sin∠ACB}=\frac{BC}{sinA}$,
即$\frac{2}{sin∠ACB}=\frac{\sqrt{2}}{sin\frac{π}{6}}=\frac{\sqrt{2}}{\frac{1}{2}}=2\sqrt{2}$,
所以sin$∠ACB=\frac{\sqrt{2}}{2}$.
因為∠ACB為鈍角,所以∠ACB=$\frac{3π}{4}$.  
∴∠BCD=$\frac{π}{4}$.…(6分)
(Ⅱ)在△BCD中,由余弦定理可知BD2=CB2+2CB.DC.cos∠BCD,
即BD2=($\sqrt{2}$)2+($\sqrt{3}+1$)2-2$\sqrt{2}$.($\sqrt{3}+1$).cos$\frac{π}{4}$,
整理得BD=2.
在△ABC中,由余弦定理可知BC2=+AB2+AC2-2AB.AC.cosA,
即($\sqrt{2}$)2=22+AC2-2.2.AC.cos$\frac{π}{6}$,
整理得AC2-2$\sqrt{3}$AC+2=0.解得AC=$\sqrt{3}±1$.
因為∠ACB為鈍角,所以AC<AB=2.所以AC=$\sqrt{3}$-1.…(12分)

點評 本題考查余弦定理的應(yīng)用,解三角形,考查基本知識的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知兩個非零向量$\overrightarrow a$與$\overrightarrow b$不共線,
(1)若$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{BC}=2\overrightarrow a+8\overrightarrow b$,$\overrightarrow{CD}=3(\overrightarrow a-\overrightarrow b)$,求證:A、B、D三點共線;
(2)試確定實數(shù)k,使得$k\overrightarrow a+\overrightarrow b$與$\overrightarrow a+k\overrightarrow b$共線;
(3)若$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,1),$\overrightarrow c=\overrightarrow a+λ\overrightarrow b$,且$\overrightarrow$⊥$\overrightarrow{c}$,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ為參數(shù))以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=-4cosθ.
(1)求曲線C1與C2交點的極坐標(biāo);
(2)A、B兩點分別在曲線C1與C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列有關(guān)函數(shù)性質(zhì)的說法,不正確的是(  )
A.若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)+g(x)為增函數(shù)
B.若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù)
C.若f(x)為奇函數(shù),g(x)為偶函數(shù),則f(x)-g(x)為奇函數(shù)
D.若f(x)為奇函數(shù),g(x)為偶函數(shù),則|f(x)|-g(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的AB的中點M的坐標(biāo)為(2,1),則直線AB的方程為x+2y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知各項不為0的等差數(shù)列{an}滿足$2{a_3}-a_7^2+2{a_{11}}=0$,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b6b8=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.曲線$\left\{\begin{array}{l}{x=cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù))上的點到直線y=2x-5的距離d的最大值為(  )
A.$\frac{5\sqrt{5}}{5}$B.$\frac{9\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.?dāng)?shù)列{an}的前n項的和為Sn,對于任意的自然數(shù)an>0,4Sn=(an+1)2
(Ⅰ)求a1的值;
(Ⅱ)求證:數(shù)列{an}是等差數(shù)列,并求通項公式;
(Ⅲ)設(shè)bn=$\frac{{a}_{n}}{{3}^{n}}$,求和Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是138cm2

查看答案和解析>>

同步練習(xí)冊答案