5.幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是138cm2

分析 根據(jù)幾何體的三視圖得到幾何體的結(jié)構(gòu),進(jìn)行求解即可.

解答 解:由三視圖可知該幾何體是個(gè)組合體,右側(cè)是一個(gè)棱長(zhǎng)分別為3,4,6的長(zhǎng)方體,
左側(cè)是個(gè)平放的三棱柱,三棱柱的高為3,底面直角三角形的兩個(gè)直角邊為3和4,
則長(zhǎng)方體的表面積為2×(3×4+3×6+4×6)-3×3=108-9=99,
三棱柱的表面積為3×5+3×4+2×$\frac{1}{2}×4×3$=39,
則幾何體的表面積為99+39=138(cm2
故答案為:138cm2

點(diǎn)評(píng) 本題主要考查空間組合體的表面積的計(jì)算,根據(jù)條件左側(cè)空間幾何體的直觀圖是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在△ABC中,∠ACB為鈍角,AB=2,BC=$\sqrt{2}$,A=$\frac{π}{6}$,D為AC延長(zhǎng)線(xiàn)上一點(diǎn),且CD=$\sqrt{3}+1$.
(Ⅰ)求∠BCD的大。
(Ⅱ)求BD,AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(3,m)$,若$(2\overrightarrow a-\overrightarrow b)$與$\overrightarrow b$平行,則m的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(Ⅰ)確定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零點(diǎn),求a的取值范圍;
(Ⅲ)若對(duì)任意的t∈(1,4),不等式f(2t-3)+f(t-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,AB1與底面ABCD成45°角,則D1到平面ACB1的距離為(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax2+21nx.
(1)求f(x)的單調(diào)區(qū)間.
(2)若f(x)在(0,1]上的最大值是-2,求a的值.
(3)記g(x)=f(x)+(a-1)lnx+1,當(dāng)a≤-2時(shí),若對(duì)任意x1,x2∈(0,+∞),總有|g(x1)-g(x2)|≥k|x1-x2|成立,試求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,已知∠A=135°,∠B=30°,那么a:b的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)圓錐過(guò)軸的截面為等邊三角形,它的頂點(diǎn)和底面圓周在球O的球面上,則該圓錐的體積與球O的體積的比值為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的首項(xiàng)a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5(n∈N*),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案