【題目】已知函數(shù),給出下列命題,其中正確命題的個數(shù)為
①當時,上單調(diào)遞增;
②當時,存在不相等的兩個實數(shù),使;
③當時,有3個零點.
A. 3B. 2C. 1D. 0
【答案】C
【解析】
①時,判斷在的單調(diào)性;
②,分別求與的函數(shù)值的范圍,判斷是否有交集;
③令,時有一解;時利用一元二次方程根的分別條件判斷方程,即在是否有兩解.
記,.
當時,對稱軸,
知函數(shù)在單調(diào)遞增,在單調(diào)遞減,
又因為在區(qū)間單調(diào)遞增,(如圖一)
所以選項①錯誤.
當時,對稱軸,
知函數(shù)在單調(diào)遞增,在區(qū)間單調(diào)遞增.
從而在單調(diào)遞增(如圖二),
所以選項②錯誤;
對于③,當時,
對稱軸,
所以在單調(diào)遞增;在單調(diào)遞減;
在區(qū)間單調(diào)遞增,
且有,,
所以函數(shù)的圖象與軸有3個交點(如圖示),
所以③正確,綜合可知正確選項只有一個.
選項C正確.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)圖象上存在兩個點A,B關于原點對稱,則點對稱為函數(shù)的“友好點對”且點對與可看作同一個“友好點對”若函數(shù)其中e為自然對數(shù)的底數(shù),恰好有兩個“友好點對”則實數(shù)m的取值范圍為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】曲線C1:y=cosx,曲線C2:y=sin2x,下列說法正確的是( )
A.將C1上所有點橫坐標擴大到原來的2倍,縱坐標不變,再將所得曲線向左平移個單位,得到C2
B.將C1上所有點橫坐標縮小到原來的,縱坐標不變,再將所得曲線向左平移個單位,得到C2
C.將C1上所有點橫坐標擴大到原來的2倍,縱坐標不變,再將所得曲線向右平移個單位,得到C2
D.將C1上所有點橫坐標縮小到原來的,縱坐標不變,再將所得曲線向右平移個單位,得到C2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,bsinA=cosB.
(1)求角B的大。
(2)若b=2,△ABC的面積為,求a,c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二奧賽班N名學生的物理測評成績(滿分120分)分布直方圖如下,已知分數(shù)在100~110的學生數(shù)有21人。
(Ⅰ)求總人數(shù)N和分數(shù)在110~115分的人數(shù)n;
(Ⅱ)現(xiàn)準備從分數(shù)在110~115分的n名學生(女生占)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導性建議,對他前7次考試的數(shù)學成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。
數(shù)學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數(shù)學成績x是線性相關的,若該生的數(shù)學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查民眾對國家實行“新農(nóng)村建設”政策的態(tài)度,現(xiàn)通過網(wǎng)絡問卷隨機調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持“新農(nóng)村建設”人數(shù)如下表:
(1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的2×2列聯(lián)表,并判斷是否有95%的把握認為以50歲為分界點對“新農(nóng)村建設”政策的支持度有差異;
(2)現(xiàn)從年齡在[70,80]內(nèi)的5名被調(diào)查人中任選兩人去參加座談會,求選出兩人中恰有一人支持新農(nóng)村建設的概率.
參考數(shù)據(jù):
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關系,現(xiàn)從分別貼有成語“人定勝天”、“爭先恐后”、“一馬當先”、“天馬行空”、“先發(fā)制人”的5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關系的概率為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了了解全校學生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數(shù)恰好各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月上網(wǎng)次數(shù)為5組: , , , , ,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學生中月上網(wǎng)次數(shù)不少于15次的學生人數(shù);
(Ⅲ)在抽取的40名學生中,從月上網(wǎng)次數(shù)不少于20次的學生中隨機抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為,過任作一條與兩條坐標軸都不垂直的直線,與橢圓交于兩點,且的周長為8,當直線的斜率為時, 與軸垂直.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在定點,總能使平分?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com