【題目】若函數(shù)圖象上存在兩個(gè)點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)對(duì)稱為函數(shù)的“友好點(diǎn)對(duì)”且點(diǎn)對(duì)與可看作同一個(gè)“友好點(diǎn)對(duì)”若函數(shù)其中e為自然對(duì)數(shù)的底數(shù),恰好有兩個(gè)“友好點(diǎn)對(duì)”則實(shí)數(shù)m的取值范圍為
A. B. C. D.
【答案】C
【解析】
求出當(dāng)時(shí)關(guān)于原點(diǎn)對(duì)稱的函數(shù),條件轉(zhuǎn)化為當(dāng)時(shí),與的圖象恰好有兩個(gè)不同的交點(diǎn),求函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,利用數(shù)形結(jié)合建立不等式關(guān)系進(jìn)行求解即可.
解:當(dāng)時(shí),關(guān)于原點(diǎn)對(duì)稱的函數(shù)為,
即,,
設(shè),,
條件等價(jià)為當(dāng)時(shí),與的圖象恰好有兩個(gè)不同的交點(diǎn),
則,,
當(dāng)時(shí),函數(shù)取得最大值,
當(dāng)時(shí),,.
由得,此時(shí)為增函數(shù),
由得,此時(shí)為減函數(shù),
即當(dāng)時(shí),函數(shù)取得極小值同時(shí)也是最小值,
作出當(dāng)時(shí),與的圖象如圖:
要使兩個(gè)圖象恰好有兩個(gè)不同的交點(diǎn),
則,即,
即,
即,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種汽車購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.
(Ⅰ)設(shè)使用n年該車的總費(fèi)用(包括購車費(fèi)用)為f(n),試寫出f(n)的表達(dá)式;
(Ⅱ)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“和、平、世、界”四個(gè)字,有放回地從中任取一個(gè)小球,直到“和”“平”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“和、平、世、界”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下24個(gè)隨機(jī)數(shù)組:
232 321 230 023 123 021 132 220 011 203 331 100
231 130 133 231 031 320 122 103 233 221 020 132
由此可以估計(jì),恰好第三次就停止的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長(zhǎng)為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若,求原點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:①“若,則,互為倒數(shù)”的逆命題;②“面積相等的三角形全等”的否命題;③“若,則有實(shí)數(shù)解”的逆否命題;④“若,則”的逆否命題.其中真命題為________(填寫所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:的離心率是,,分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),的面積為直線l過點(diǎn)且與橢圓E交于P,Q兩點(diǎn).
求橢圓E的標(biāo)準(zhǔn)方程;
求面積的最大值;
設(shè)直線與直線交于點(diǎn)N,證明:點(diǎn)N在定直線上,并寫出該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若雙曲線與雙曲線有共同的漸近線,且過點(diǎn).
(1)求雙曲線的方程;
(2)過的直線與雙曲線的左支交于、兩點(diǎn),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在處的切線與直線垂直,求的值;
(2)關(guān)于的不等式在上恒成立,求的取值范圍;
(3)討論函數(shù)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列命題,其中正確命題的個(gè)數(shù)為
①當(dāng)時(shí),上單調(diào)遞增;
②當(dāng)時(shí),存在不相等的兩個(gè)實(shí)數(shù),使;
③當(dāng)時(shí),有3個(gè)零點(diǎn).
A. 3B. 2C. 1D. 0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com