11.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x-4y+8≥0}\\{3x-2y-6≤0}\end{array}\right.$,則z=|x+5y-6|的最大值為13.

分析 先畫出滿足條件的平面區(qū)域,求出A,C的坐標(biāo),令a=x+5y-6得:y=-$\frac{1}{5}$x+$\frac{6}{5}$+$\frac{1}{5}a$,通過圖象求出|a|的最大值即z的最大值即可.

解答 解:實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x-4y+8≥0}\\{3x-2y-6≤0}\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
三角形ABC的三邊及其內(nèi)部部分:

聯(lián)立$\left\{\begin{array}{l}{x-4y+8=0}\\{3x-2y-6=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$得:A(4,3).
聯(lián)立$\left\{\begin{array}{l}{x+y-2=0}\\{x-4y+8=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$得:B(2,0).
令a=x+5y-6得:y=-$\frac{1}{5}$x+$\frac{6}{5}$+$\frac{1}{5}a$,
顯然直線過A(4,3)時,a最大,此時a=13,
直線過B(2,0)時,a最小,此時a=-4,
故z=|a|,故z的最大值是13,
故答案為:13.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.也可以轉(zhuǎn)化為點到直線的距離公式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圖甲是應(yīng)用分形幾何學(xué)做出的一個分形規(guī)律圖,按照圖甲所示的分形規(guī)律可得圖乙所示的一個樹形圖.

我們采用“坐標(biāo)”來表示圖乙各行中的白圈、黑圈的個數(shù)(橫坐標(biāo)表示白圈的個數(shù),縱坐標(biāo)表示黑圈的個數(shù)).比如第一行記為(0,1),第二行記為(1,2),第三行記為(4,5),照此下去,第四行中白圈與黑圈的“坐標(biāo)”為(13,14),第n(n∈N*)行中白圈與黑圈的“坐標(biāo)”為($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點A,設(shè)拋物線E:y2=4x上任意一點M到準(zhǔn)線l的距離為d,則d+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=sin(ωx+φ-$\frac{π}{4}$)(ω>0,0<φ<$\frac{π}{2}$)為奇函數(shù),且y=f(x)的圖象與x軸的兩個相鄰交點之間的距離為π,設(shè)矩形區(qū)域Ω是由直線x=±$\frac{π}{2}$和y=±1所圍成的平面圖形,區(qū)域D是由函數(shù)y=f(x+$\frac{π}{2}$)、x=±$\frac{π}{2}$及y=-1所圍成的平面圖形,向區(qū)域Ω內(nèi)隨機地拋擲一粒豆子,則該豆子落在區(qū)域D的概率是$\frac{π+2}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100等于(  )
A.90B.-96C.98D.-100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.平面直角坐標(biāo)系中,已知直線l:x=4,定點F(1,0),動點P(x,y)到直線l的距離是到定點F的距離的2倍.
(1)求動點P的軌跡C的方程;
(2)若M為軌跡C上的動點,直線m過點M且與軌跡C只有一個公共點,求證:此時點E(-1,0)和點F(1,0)到直線m的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,在拋物線C上取一點A,過A分別向x軸和準(zhǔn)線作垂線,垂足分別為M,N,連接AF并延長交拋物線于另一點B,若$\sqrt{5}$AM=2AN,則線段AB的長為(  )
A.20B.40C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在各棱長均為2的正三棱錐A-BCD中,平面α與棱AB、AD、CD、BC分別相交于點E、F、G、H,則四邊形EFGH的周長的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an-bn}是等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案