20.如圖,在各棱長均為2的正三棱錐A-BCD中,平面α與棱AB、AD、CD、BC分別相交于點E、F、G、H,則四邊形EFGH的周長的最小值是( 。
A.1B.2C.3D.4

分析 將正四面體展開為平行四邊形,如圖形式,根據(jù)兩點之間線段最短解答.

解答 解:將四面體展開為平面圖形,即把面ADC沿著AD翻折到與面ADB共面上來,再把面DBC沿著BC翻折到面ABC中,再反這個面沿著AB翻折到面ADB中來,(其實就是得到四面體的展開圖),
當(dāng)E,F(xiàn),G,H四點在一條直線時,四面體中,四邊形EFGH周長最小,最小值為2+2=4.
如圖:


故選:D.

點評 本題考查了求幾何體中折線最短的問題;關(guān)鍵是將空間問題轉(zhuǎn)化為平面問題解決,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)過點P(-1,1)作兩直線,PA,PB與拋物線y2=4x任相切于點A,B,若F為拋物線y2=4x的焦點,|$\overrightarrow{AF}$|•|$\overrightarrow{BF}$|=( 。
A.$\sqrt{15}$B.5C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x-4y+8≥0}\\{3x-2y-6≤0}\end{array}\right.$,則z=|x+5y-6|的最大值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2}{x}$-alnx,其中a∈R.
(Ⅰ)當(dāng)a=-1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)g(x)=x2+f(x)在區(qū)間(0,1)內(nèi)有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的第一項a1=5且Sn-1=an(n≥2,n∈N*).
(1)求a2,a3,a4,并由此猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},則A∩B=(  )
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過拋物線y2=2px(p>0)的焦點F作傾斜角為60°的直線l交拋物線于A,B兩點,且|AF|>|BF|,則$\frac{|AF|}{|BF|}$的值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合M={-2,-1,0,1,2},N={x|x+2≥x2},則M∩N=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知y=f(x)為偶函數(shù),當(dāng)x≥0時,f(x)=-x2+2x,則滿足f(f(a))=$\frac{1}{2}$的實數(shù)a的個數(shù)為8.

查看答案和解析>>

同步練習(xí)冊答案