【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大。
(ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)(i),(ii)見(jiàn)解析.
【解析】試題分析:(1)連結(jié)BD,設(shè)AC∩BD=O,設(shè)G為DE的中點(diǎn),連結(jié)OG,FG,推導(dǎo)出四邊形AOGF為平行四邊形,從而AC∥FG,由此能證明AC∥平面DEF.
(2)(i)以A為原點(diǎn),AD,AB,AF分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法能求出直線AC與平面CDE所成角的大小.
(ii)假設(shè)棱DE上存在點(diǎn)P,使得BP⊥平面DEF.設(shè),則,設(shè)P(x,y,z),求出P點(diǎn)坐標(biāo)為,從而,由此能求出DE上存在點(diǎn)P,使得BP⊥平面DEF,且.
試題解析:
()證明:連接交于,
∵四邊形為正方形,
∴是中點(diǎn),
設(shè)是的中點(diǎn),連接, ,
則,且,
∵四邊形為直角梯形,且, ,
∴,且,
∴,且,
∴四邊形為平行四邊形,
∴,即,
又∵平面, 平面,
∴平面.
()(i)由已知, , ,
∴,
∵二面角為直二面角,
∴平面平面,
∴平面,
∴, ,
又四邊形為正方形,
∴,
∴, , 兩兩垂直,
以為原點(diǎn), , , 分別為, , 軸建立空間直角坐標(biāo)系,
如圖所示,
由得: , , , , , .
∴, , .
設(shè)平面的一個(gè)法向量為,則:
,即,
取,則, ,
∴,
設(shè)直線與平面所成的角為,則有:
,
∵,
∴,
即直線與平面所成角的大小為.
(ii)假設(shè)棱上存在點(diǎn),使得平面,
設(shè),則,
設(shè),則,
∵,
∴,
∴, , ,
解得, , ,
即點(diǎn)坐標(biāo)為,
∵,
∴,
又, ,
∴,即,
解得.
∵,
∴上存在點(diǎn),使得平面,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與坐標(biāo)原點(diǎn)距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點(diǎn),試判斷是否存在k值,使以CD為直徑的圓過(guò)定點(diǎn)E?若存在求出這個(gè)k值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=k(x+ )與曲線y= 恰有兩個(gè)不同交點(diǎn),記k的所有可能取值構(gòu)成集合A;P(x,y)是橢圓 上一動(dòng)點(diǎn),點(diǎn)P1(x1 , y1)與點(diǎn)P關(guān)于直線y=x+l對(duì)稱,記 的所有可能取值構(gòu)成集合B,若隨機(jī)地從集合A,B中分別抽出一個(gè)元素λ1 , λ2 , 則λ1>λ2的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題13分)已知數(shù)列滿足:,,且.記
集合.
(Ⅰ)若,寫(xiě)出集合的所有元素;
(Ⅱ)若集合存在一個(gè)元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);
(Ⅲ)求集合的元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)B且斜率為k的動(dòng)直線l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與直線相交于A、B兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正三角形ABC中,D,E,F分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將沿DE,EF,DF折成正四面體,則在此正四面體中,下列說(shuō)法正確的是______.
異面直線PG與DH所成的角的余弦值為;
;
與PD所成的角為;
與EF所成角為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com