【題目】已知橢圓的離心率,過點A(0,-b)和B(a,0)的直線與坐標原點距離為.

(1)求橢圓的方程;

(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點,試判斷是否存在k值,使以CD為直徑的圓過定點E?若存在求出這個k值,若不存在說明理由.

【答案】12)存在。

【解析】

試題(1)先由兩點式求出直線方程,再根據(jù)離心率和點到直線距離公式列出方程解出,即可求得;(2)假設存在這樣的直線,聯(lián)立直線方程和橢圓方程,消去y,得到x的一元二次方程,求出兩根之和和兩根之積,要使以CD為直徑的圓過點E,當且僅當CE⊥DE時,則,再利用y=kx+2,將上式轉化,最后求得,并驗證。

試題解析:(1)直線AB方程為:bx-ay-ab0

依題意解得

橢圓方程為

2)假設存在這樣的k值,由

,,則

8

要使以CD為直徑的圓過點E-10),當且僅當CE⊥DE時,則,即

式代入整理解得經(jīng)驗證,,使成立

綜上可知,存在,使得以CD為直徑的圓過點E 。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和Sn滿足:Sn=nan﹣2nn﹣1),首項=1.

(1)求數(shù)列{an}的通項公式;

(2)設數(shù)列的前n項和為Mn,求證: Mn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P在橢圓上,是橢圓的兩個焦點,,的三條邊長成等差數(shù)列,則橢圓的離心率e =___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)為: ( )

是“的充要條件”;

②“”是“”的必要不充分條件;

③“”是“直線與圓相切”的充分不必要條件

④“”是“”既不充分又不必要條件

A. 3 B. 4 C. 1 D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解本校高一學生每周課外閱讀時間(單位:小時)的情況,按10%的比例對該校高一600名學生進行抽樣統(tǒng)計,將樣本數(shù)據(jù)分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計該校高一學生每周課外閱讀的平均時間;
(Ⅲ)為了進一步提高本校高一學生對課外閱讀的興趣,學校準備選拔2名學生參加全市閱讀知識競賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機抽取6名學生,再從這6名學生中隨機抽取2名學生代表學校參加全市競賽,在此條件下,求第三組學生被抽取的人數(shù)X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C (a>0,b>0)的離心率為2,右頂點為(1,0).

(1)求雙曲線C的方程;

(2)設直線y=-xmy軸交于點P,與雙曲線C的左、右支分別交于點QR,且=2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為

(1)求橢圓的方程;

(2)設直線與橢圓交于兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且 ,平面平面,

)求證: 平面

)若二面角為直二面角,

i)求直線與平面所成角的大。

ii)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案