【題目】如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.
(1)求證:;
(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.
(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.
(1)不妨設(shè),則,
在中,
,
則,
因?yàn)?/span>,
所以,因?yàn)?/span>//,
且A、B、M、N四點(diǎn)共面,所以//平面.
又平面平面,所以//.
而,.
(2)因?yàn)槠矫?/span>平面,且,
所以平面,,
因?yàn)?/span>,所以平面,,
因?yàn)?/span>,平面與平面夾角為,
所以,在中,易知N為的中點(diǎn),
如圖,建立空間直角坐標(biāo)系,
則,,,
,,
,,,
設(shè)平面的一個(gè)法向量為,
則由,
令,得.
設(shè)與平面所成角為,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著國(guó)家綜合國(guó)力的提升和科技的進(jìn)步,截至2018年底,中國(guó)鐵路運(yùn)營(yíng)里程達(dá)13,2萬千米,這個(gè)數(shù)字比1949年增長(zhǎng)了5倍;高鐵運(yùn)營(yíng)里程突破2.9萬千米,占世界高鐵運(yùn)營(yíng)里程的60%以上,居世界第一位下表截取了2012--2016年中國(guó)高鐵密度的發(fā)展情況(單位:千米/萬平方千米).
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
高鐵密度 | 9.75 | 11.49 | 17.14 | 20.66 | 22.92 |
已知高鐵密度y與年份代碼x之間滿足關(guān)系式(為大于0的常數(shù))若對(duì)兩邊取自然對(duì)數(shù),得到,可以發(fā)現(xiàn)與線性相關(guān).
(1)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程(保留到小數(shù)點(diǎn)后一位);
(2)利用(1)的結(jié)論,預(yù)測(cè)到哪一年高鐵密度會(huì)超過30千米/平方千米.
參考公式設(shè)具有線性相關(guān)系的兩個(gè)變量的一組數(shù)據(jù)為,
則回歸方程的系數(shù):,.
參考數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線C:x2=4y的準(zhǔn)線上任意一點(diǎn)P作拋物線的切線PA,PB,切點(diǎn)分別為A,B,則A點(diǎn)到準(zhǔn)線的距離與B點(diǎn)到準(zhǔn)線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參數(shù)方程為 (為參數(shù)).
(Ⅰ)求曲線上的點(diǎn)到直線的距離的最大值;
(Ⅱ)過點(diǎn)與直線平行的直線與曲線 交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于, 兩點(diǎn),直線, 分別與軸交于點(diǎn), .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某親子公園擬建議廣告牌,將邊長(zhǎng)為米的正方形ABCD和邊長(zhǎng)為1米的正方形AEFG在A點(diǎn)處焊接,AM、AN、GM、DN均用加強(qiáng)鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點(diǎn)和N點(diǎn),且GM、DN、MN長(zhǎng)度相等不計(jì)焊接點(diǎn)大小
若時(shí),求焊接點(diǎn)A離地面距離;
若記,求加強(qiáng)鋼管AN最長(zhǎng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:
質(zhì)量指標(biāo)值m | 25≤m<35 | 15≤m<25或35≤m<45 | 0<m<15或45≤m<65 |
等級(jí) | 一等品 | 二等品 | 三等品 |
某企業(yè)從生產(chǎn)的這種產(chǎn)品中抽取100件產(chǎn)品作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,得到下圖的率分布直方圖.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
(1)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品三等品數(shù)Y近似滿足Y~H(10,15,100),請(qǐng)測(cè)算“質(zhì)量提升月”活動(dòng)后這種產(chǎn)品的“二等品率“(一、二等品其占全部產(chǎn)品百分比)較活動(dòng)前提高多少個(gè)百分點(diǎn)?
(2)若企業(yè)每件一等品售價(jià)180元,每件二等品售價(jià)150元,每件三等品售價(jià)120元,以樣本中的頻率代替相應(yīng)概率,現(xiàn)有一名聯(lián)客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為X(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某高中學(xué)校為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐,規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為且;選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場(chǎng)比賽中獲得第一名,下列說法正確的是( )
A. 乙有四場(chǎng)比賽獲得第三名
B. 每場(chǎng)比賽第一名得分為
C. 甲可能有一場(chǎng)比賽獲得第二名
D. 丙可能有一場(chǎng)比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,,分別為,的中點(diǎn).
(1)證明:直線平面;
(2),,,,求平面和平面所成的角(銳角)的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com