11.(1)求函數(shù)f(x)=sin2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.
(2)求函數(shù)$y=tan(\frac{x}{2}+\frac{π}{3})$的定義域和單調(diào)區(qū)間.

分析 (1)化簡f(x)為cosx的二次函數(shù),用換元法令t=cosx,從而求出f(x)的值域;
(2)根據(jù)正切函數(shù)的定義域和單調(diào)性,即可求出函數(shù)$y=tan(\frac{x}{2}+\frac{π}{3})$的定義域和單調(diào)增區(qū)間.

解答 解:(1)f(x)=1-cos2x+cosx+1
=-cos2x+cosx+2,
令t=cosx,則t∈[0,1],
則 y=-t2+t+2,t∈[0,1];
所以當(dāng)t=0或1時(shí),ymin=2;
當(dāng)$t=\frac{1}{2}$時(shí),${y_{max}}=\frac{9}{4}$;
所以f(x)的值域是$[2,\frac{9}{4}]$;
(2)∵函數(shù)$y=tan(\frac{x}{2}+\frac{π}{3})$,
令$\frac{x}{2}+\frac{π}{3}≠\frac{π}{2}+kπ$,
解得$x≠\frac{π}{3}+2kπ,k∈z$;
所以$y=tan(\frac{x}{2}+\frac{π}{3})$的定義域?yàn)?\left\{{\left.x\right|x≠\frac{π}{3}+2kπ,k∈z}\right\}$;
令$t=\frac{x}{2}+\frac{π}{3}$,
由y=tant在$({-\frac{π}{2}+kπ,\frac{π}{2}+kπ})$,k∈Z內(nèi)單調(diào)遞增,
令-$\frac{π}{2}$+kπ<$\frac{x}{2}$+$\frac{π}{3}$<$\frac{π}{2}$+kπ,k∈Z,
解得-$\frac{5π}{3}$+2kπ<x<$\frac{π}{3}$+2kπ,k∈Z,
所以$y=tan(\frac{x}{2}+\frac{π}{3})$在(-$\frac{5π}{3}$+2kπ,$\frac{π}{3}$+2kπ),k∈Z上單調(diào)遞增.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了求復(fù)合函數(shù)的值域問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x+a}{x-3}$的圖象過點(diǎn)(0,-1).
(1)求實(shí)數(shù)a的值;
(2)若f(x)=m+$\frac{n}{x-3}$(m,n是常數(shù)),求實(shí)數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i是虛數(shù)單位,復(fù)數(shù)z=${({\frac{3-i}{1+i}})^2}$,則復(fù)數(shù)z的共軛復(fù)數(shù)表示的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax-1)9=a0+a1x+a2x2+…+a9x9,且a0+a1+a2+…+a9=0,則a3=84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若拋物線y2=2px(p>0)上的點(diǎn)A(x0,$\sqrt{2}$)到其焦點(diǎn)的距離是A到y(tǒng)軸距離的3倍,則p等于( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在矩陣A的變換下,坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A-1;
(2)求圓x2+y2=4在矩陣A-1的變換下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知tanα=2,tanβ=3,則tan(α+β)=( 。
A.1B.-1C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計(jì)表如表:
日最高氣溫t(單位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天數(shù)612XY
由于工作疏忽,統(tǒng)計(jì)表被墨水污染,Y和X數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高氣溫高于32℃稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測是否有95%的把握認(rèn)為本地區(qū)的“高溫天氣”與冷飲“旺銷”有關(guān)?說明理由.
高溫天氣非高溫天氣合計(jì)
旺銷22224        
不旺銷426
合計(jì)62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,則a=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案