20.氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計(jì)表如表:
日最高氣溫t(單位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天數(shù)612XY
由于工作疏忽,統(tǒng)計(jì)表被墨水污染,Y和X數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高氣溫高于32℃稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測是否有95%的把握認(rèn)為本地區(qū)的“高溫天氣”與冷飲“旺銷”有關(guān)?說明理由.
高溫天氣非高溫天氣合計(jì)
旺銷22224        
不旺銷426
合計(jì)62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

分析 (1)由題意,根據(jù)數(shù)表和頻率、頻數(shù)的關(guān)系計(jì)算Y、X的值,并填寫列聯(lián)表;
(2)計(jì)算觀測值K2,對照臨界值表得出概率結(jié)論.

解答 解 (1)由題意,P(t≤32℃)=0.8,
∴P(t>32℃)=1-P(t≤32℃)=0.2;
∴Y=30×0.2=6,X=30-(6+12+6)=6;…..(5分)
填寫列聯(lián)表,如下;

高溫天氣非高溫天氣合計(jì)
旺銷22224
不旺銷426
合計(jì)62430
(2)計(jì)算觀測值
∴K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{30{×(2×2-22×4)}^{2}}{24×6×6×24}$≈10.21,
∵10.21>3.841,…..(10分)
∴有95%的把握認(rèn)為本地區(qū)的“高溫天氣”與冷飲“旺銷”有關(guān).    …..(12分)

點(diǎn)評 本題考查了獨(dú)立性檢驗(yàn)與頻率、頻數(shù)的計(jì)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若曲線y=$\sqrt{4-{x^2}}$+1與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.$({\frac{5}{12},\frac{3}{4}}]$B.$[{\frac{5}{12},+∞})$C.$({0,\frac{5}{12}}]$D.$({\frac{1}{3},\frac{1}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)求函數(shù)f(x)=sin2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.
(2)求函數(shù)$y=tan(\frac{x}{2}+\frac{π}{3})$的定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過P(-4,1)的直線l與雙曲線$\frac{x^2}{4}-{y^2}=1$僅有一個(gè)公共點(diǎn),則這樣的直線l有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{10}x+1,x≤1}\\{lnx-1,x>1}\end{array}\right.$,則方程f(x)=ax(a>0)恰有兩個(gè)不同實(shí)數(shù)根時(shí),求a的取值范圍是[$\frac{1}{10}$,$\frac{1}{{e}^{2}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax+3
(1)當(dāng)x∈R時(shí),f(x)≥2恒成立,求a的取值范圍;
(2)當(dāng)x∈R時(shí),g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=x2+sinx的導(dǎo)函數(shù)y′=2x+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+3x-9.
(1)若函數(shù)f(x)在x=-3時(shí)取得極值,求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知在極坐標(biāo)系中,曲線Ω的方程為ρ=6cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,并在兩坐標(biāo)系中取相同的長度單位,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=4+tcosθ\\ y=-1+tsinθ\end{array}\right.$(t為參數(shù),θ∈R).
(Ⅰ)求曲線Ω的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l交曲線Ω于A、C兩點(diǎn),過點(diǎn)(4,-1)且與直線l垂直的直線l0交曲線Ω于B、D兩點(diǎn).求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案