分析 根據(jù)向量的坐標(biāo)運(yùn)算得到$\overrightarrow{AB}$=$\overrightarrow{DC}$,即可得到四邊形ABCD是平行四邊形,再求出$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,且|$\overrightarrow{AC}$|=|$\overrightarrow{BD}$|,平行四邊形ABCD是正方形.
解答 解:∵$A({4,1+\sqrt{2}}),B({1,5+\sqrt{2}}),C({-3,2+\sqrt{2}})D({0,-2+\sqrt{2}})$,
∴$\overrightarrow{AB}$=(-3,4),$\overrightarrow{DC}$=(-3,4),
∴$\overrightarrow{AB}$=$\overrightarrow{DC}$,
∴$\overrightarrow{AB}$∥$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|,
∴四邊形ABCD是平行四邊形;
∵$\overrightarrow{AC}$=(-7,1),$\overrightarrow{BD}$=(-1,-7),
∴$\overrightarrow{AC}$•$\overrightarrow{BD}$=7-7=0,
∴$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,且|$\overrightarrow{AC}$|=|$\overrightarrow{BD}$|,
∴平行四邊形ABCD是正方形.
點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示,也考查了平面向量的坐標(biāo)運(yùn)算問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 0 | C. | 1 | D. | ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | -5 | C. | -13 | D. | -29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4\sqrt{2}π$ | B. | $8\sqrt{2}π$ | C. | 4π | D. | $4\sqrt{2}π+4π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2-\sqrt{3}}{4}$ | B. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | C. | $\frac{2±\sqrt{3}}{4}$ | D. | $\frac{\sqrt{2}±\sqrt{6}}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com