【題目】在平面直角坐標(biāo)系 中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系. 曲線 的極坐標(biāo)方程為 , 為曲線 上異于極點(diǎn)的動(dòng)點(diǎn),點(diǎn) 在射線 上,且 成等比數(shù)列.
(Ⅰ)求點(diǎn) 的軌跡 的直角坐標(biāo)方程;
(Ⅱ)已知 , 是曲線 上的一點(diǎn)且橫坐標(biāo)為 ,直線 交于 兩點(diǎn),試求 的值.

【答案】解:(I)設(shè) , ,
則由 成等比數(shù)列,可得
,
滿足 ,即 ,
,
化為直角坐標(biāo)方程為 .
(Ⅱ)依題意可得 ,故 ,即直線 傾斜角為 ,
∴直線 的參數(shù)方程為
代入圓的直角坐標(biāo)方程 ,

, ,

【解析】本題考查的知識(shí)要點(diǎn):參數(shù)方程和極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線和圓的極坐標(biāo)方程、參數(shù)方程等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想等.曲線的極坐標(biāo)方程定義:如果曲線C上的點(diǎn)與方程f(ρ,θ)=0有如下關(guān)系:
(1)曲線C上任一點(diǎn)的坐標(biāo)(所有坐標(biāo)中至少有一個(gè))符合方程f(ρ,θ)=0;
(2)以方程f(ρ,θ)=0的所有解為坐標(biāo)的點(diǎn)都在曲線C上.
則曲線C的方程是f(ρ,θ)=0.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用參數(shù)方程的定義,掌握在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)都是某個(gè)變數(shù)的函數(shù)并且對(duì)于的每一個(gè)允許值,由這個(gè)方程所確定的點(diǎn)都在這條曲線上,那么這個(gè)方程就叫做這條曲線的參數(shù)方程即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2017年度進(jìn)行一系列促銷活動(dòng),經(jīng)過(guò)市場(chǎng)調(diào)查和測(cè)算,飲料的年銷售量x萬(wàn)件與年促銷費(fèi)t萬(wàn)元間滿足 .已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3萬(wàn)元,每生產(chǎn)1萬(wàn)件飲料需再投入32萬(wàn)元的生產(chǎn)費(fèi)用,若將每件飲料的售價(jià)定為其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤(rùn)y(萬(wàn)元)表示為促銷費(fèi)t(萬(wàn)元)的函數(shù);
(2)該企業(yè)2017年的促銷費(fèi)投入多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?
(注:利潤(rùn)=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣(mài)店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開(kāi)支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開(kāi)支2 000元.

(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:“存在x0∈[1,+∞),使得(log23) ≥1”,則下列說(shuō)法正確的是(  )
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(﹣∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列 的前 和為 ,若
(Ⅰ)求數(shù)列 的通項(xiàng)公式;
(Ⅱ)若 ,求數(shù)列 的前 項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】編號(hào)為 的16名籃球運(yùn)動(dòng)員在某次訓(xùn)練比賽中的得分記錄如下:

運(yùn)動(dòng)員編號(hào)

得分

15

35

21

28

25

36

18

34

運(yùn)動(dòng)員編號(hào)

得分

17

26

25

33

22

12]

31

38

(Ⅰ)將得分在對(duì)應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;

區(qū)間

人數(shù)

(Ⅱ)從得分在區(qū)間 內(nèi)的運(yùn)動(dòng)員中隨機(jī)抽取2人,
(i)用運(yùn)動(dòng)員的編號(hào)列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且asinB+bcosA=0.
(1)求角A的大;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中,底面梯形 , ,平面 平面 , 是等邊三角形,已知 , 上任意一點(diǎn), ,且 .

(1)求證:平面 平面 ;
(2)試確定 的值,使三棱錐 體積為三棱錐 體積的3倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案