【題目】設,關于的方程,給出下列四個命題,其中假命題的個數是( )
①存在實數,使得方程恰有個不同的實根;
②存在實數,使得方程恰有個不同的實根;
③存在實數,使得方程恰有個不同的實根;
④存在實數,使得方程恰有個不同的實根.
A.B.C.D.
【答案】C
【解析】
作出函數圖象,令,對根的判別式分類討論即可得解.
解:
可作函數圖象如下所示:
令,
(1)當時,解得或
①當時,解得由圖可知,存在個不同的實數使得,
即方程有個不同的實數根;
②當時,解得由圖可知,不存在實數使得,即方程無實數根;
(2)當時,解得或,
①當時,方程有兩不相等的實數根,設為,,
則,
,均為負數,由函數圖象知,故不存在實數使得,即方程無實數根;
②當時,方程有兩不相等的實數根,設為,,
則,
,均為正數且,
設則,由圖可知,存在個不同的實數使得,
存在個不同的實數使得,
即方程有個不同的實數根;
(3)當時,方程無解,則方程無實數根;
綜上可得正確的有①④,錯誤的有②③
故選:
科目:高中數學 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系.若直線的極坐標方程為,曲線的極坐標方程為,將曲線上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)已知直線與曲線交于兩點,點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,莖葉圖記錄了甲、乙兩組各4名同學的植樹棵數。乙組記錄中有一個數據模糊,無法確認,在圖中以X表示。
(1)如果x=8,求乙組同學植樹棵數的平均數和方差;
(2)如果x=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數Y的分布列。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中點。
(1)求證:EM∥平面ADF;
(2)求二面角D-AF-B的余弦值;
(3)在線段ED上是否存在一點P,使得BP∥平面ADF?若存在,求出EP的長度;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數.(直接寫出結果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據等差數列的, ,列出關于首項、公差的方程組,解方程組可得與的值,從而可得數列的通項公式;(2)利用已知條件根據題意列出關于首項 ,公比 的方程組,解得、的值,求出數列的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數的取值范圍;
(2)若是的充分不必要條件,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(其中t為參數),在以原點O為極點,以軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)求直線的普通方程及曲線的直角坐標方程;
(2)設是曲線上的一動點, 的中點為,求點到直線的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com