過點的橢圓的離心率為,橢圓與軸交于兩點,過點的直線與橢圓交于另一點,并與軸交于點,直線與直線交于點
(1)當(dāng)直線過橢圓的右焦點時,求線段的長;
(2)當(dāng)點異于點時,求證:為定值

(2)當(dāng)直線軸垂直時與題意不符,所以直線軸不垂直,即直線的斜率存在
設(shè)直線的方程為
代入橢圓的方程,化簡得,解得
代入直線的方程,得
所以,的坐標(biāo)為
又直線的方程為,直線的方程為
聯(lián)立解得
的坐標(biāo)為
所以為定值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別是橢圓的左右焦點,若在其右準(zhǔn)線上存在點,使為等腰三角形,則橢圓的離心率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖,已知為橢圓的右焦點,直線過點且與雙曲線的兩條漸進線分別交于點,與橢圓交于點.

(I)若,雙曲線的焦距為4。求橢圓方程。
(II)若為坐標(biāo)原點),,求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點在y軸上,一個焦點到長軸的兩端點的距離之比是1∶4, 短軸長為8, 則橢圓的標(biāo)準(zhǔn)方程是               ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點,過左焦點作直線與橢圓交于不同的兩點、
(Ⅰ)若,求的長;
(Ⅱ)在軸上是否存在一點,使得為常數(shù)?若存在,求出點的坐標(biāo);若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知傾斜角α≠0的直線l過橢圓(a>b>0)的右焦點交橢圓于A.B兩點,P為直線上任意一點,則∠APB為 (    )
A.鈍角    
B.直角          
C.銳角         
D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個焦點與拋物線的焦點重合,且截拋物線的準(zhǔn)線所得弦長為,傾斜角為的直線過點.
(Ⅰ)求該橢圓的方程;
(Ⅱ)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若P是以F1F2為焦點的橢圓=1上一點,則DPF1F2的周長等于_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是橢圓上一點,是橢圓的焦點,則的最大值是( )    
A.4B.6C.9D.12

查看答案和解析>>

同步練習(xí)冊答案