A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 設(shè)側(cè)棱AA1的長為x,A1E=t,則AE=x-t,由已知得t2-xt+4=0,由此利用根的判別式能求出側(cè)棱AA1的長的最小值.
解答 解:設(shè)側(cè)棱AA1的長為x,A1E=t,則AE=x-t,
∵長方體ABCD-A1B1C1D1的底面是邊長為2的正方形,
∠C1EB=90°,
∴$C{E}^{2}+B{E}^{2}=B{{C}_{1}}^{2}$,
∴8+t2+4+(x-t)2=4+x2,
整理,得:t2-xt+4=0,
∵在側(cè)棱AA1上至少存在一點E,使得∠C1EB=90°,
∴△=(-x)2-16≥0,
解得x≥4.或x≤-4(舍).
∴側(cè)棱AA1的長的最小值為4.
故選:B.
點評 本題考查長方體的側(cè)棱長的最小值的求法,是中檔題,解題時要注意根的判別式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≥9 | B. | i≤9 | C. | i≤10 | D. | i≥10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,$\frac{5π}{6}$) | B. | ($\frac{π}{6}$,$\frac{2π}{3}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2016}$,+∞) | B. | (-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | (-$\frac{1}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com