5.已知直線l的方程為3x-4y+4=0
(1)求過點(-2,2)且與直線l垂直的直線方程;
(2)求與直線l平行且距離為2的直線方程.

分析 (1)設與直線l:3x-4y+4=0垂直的直線方程為4x+3y+c=0,把點(-2,2)代入,能求出結(jié)果.
(2)設與直線l平行且距離為2的直線方程為3x-4y+c=0,由平行線間的距離公式能求出結(jié)果.

解答 解:(1)設與直線l:3x-4y+4=0垂直的直線方程為4x+3y+c=0,
把點(-2,2)代入,得:-8+6+c=0,解得c=2,
∴過點(-2,2)且與直線l垂直的直線方程為:4x+3y+2=0.
(2)設與直線l平行且距離為2的直線方程為3x-4y+c=0,
則$\frac{|c-4|}{\sqrt{9+16}}$=2,
解得c=14或c=2.
∴與直線l平行且距離為2的直線方程為3x-4y+2=0或3x-4y+14=0.

點評 本題考查直線方程的求法,是基礎題,解題時要認真審題,注意直線與直線平行、直線與直線垂直的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.△ABC中,角A,B,C所對的邊分別為a,b,c.若a=3,b=2,cos(A+B)=$\frac{1}{3}$,則邊c=$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知等比數(shù)列a1,a2,…a8各項為正且公比q≠1,則( 。
A.a1+a8=a4+a5B.a1+a8<a4+a5
C.a1+a8>a4+a5D.a1+a8與a4+a5大小關系不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,有一塊扇形草地OMN,已知半徑為R,∠MON=$\frac{π}{2}$,現(xiàn)要在其中圈出一塊矩形場地ABCD作為兒童樂園使用,其中點A、B在弧MN上,且線段AB平行于線段MN
(1)若點A為弧MN的一個三等分點,求矩形ABCD的面積S;
(2)當A在何處時,矩形ABCD的面積S最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若圓C1:x2+y2=1與圓C2:(x-3)2+(y-4)2=25-m外切,則m=( 。
A.9B.19C.21D.-11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:x=1且y=1,命題q:x+y=2,則命題p是命題q的( 。l件.
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點為F1(-5,0),F(xiàn)2(5,0),P為雙曲線C的右支上一點,且滿足|PF1|-|PF2|=2$\sqrt{5}$,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.為研究大氣污染與人的呼吸系統(tǒng)疾病是否有關,對重污染地區(qū)和輕污染地區(qū)作跟蹤調(diào)查,得出如下數(shù)據(jù):
患呼吸系統(tǒng)疾病未患呼吸系統(tǒng)疾病總計
重污染地區(qū)1031 3971 500
輕污染地區(qū)131 4871 500
總計1162 8843 000
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$能否在犯錯誤的概率不超過0.001的前提下認為大氣污染與人的呼吸系統(tǒng)疾病有關?
參考數(shù)據(jù):
P(K2≥k00.0100.0050.001
    k06.6357.87910828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知公差不為0的等差數(shù)列{an}滿足:a1=1且a2,a5,a14成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an和前n項和Sn;
(2)證明不等式$\frac{3}{2}-\frac{1}{n+1}<\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<2-\frac{1}{n}(n≥2$且n∈N*

查看答案和解析>>

同步練習冊答案