15.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若a=3,b=2,cos(A+B)=$\frac{1}{3}$,則邊c=$\sqrt{17}$.

分析 由已知利用三角形內(nèi)角和定理,誘導(dǎo)公式可求cosC,進(jìn)而利用余弦定理即可計(jì)算得解.

解答 解:∵cos(A+B)=cos(π-C)=$\frac{1}{3}$,可得:cosC=-$\frac{1}{3}$,
又∵a=3,b=2,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{{3}^{2}+{2}^{2}-2×3×2×(-\frac{1}{3})}$=$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理,誘導(dǎo)公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:“雙曲線$\frac{y^2}{3}-\frac{x^2}{m}=1$的離心率$e∈({\sqrt{2},+∞})$”,命題q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦點(diǎn)在x軸上的橢圓方程”.若命題“p∧q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.是否存在實(shí)數(shù) a,使函數(shù)f(x)=cos2x+2asinx+3a-1在閉區(qū)間上的最大值為 4,若存在,則求出對(duì)應(yīng)的 a 值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=lnx-$\frac{1}{2}{x^2}$,g(x)=$\frac{1-m}{2}{x^2}$+x,m∈R,令F(x)=f(x)+g(x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值;
(3)若m=-1,且正實(shí)數(shù)x1,x2滿足F(x1)=-F(x2),求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合A={1,2,3},B={0,1,2},則A∩B=( 。
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在直三棱柱ABC-A1B1C1中,AC⊥BC,點(diǎn)M是側(cè)面ABB1A1內(nèi)的一點(diǎn),若MC與平面ABC所成的角為30°,MC與平面ACC1A1所成的角也為30°,則MC與平面BCC1B1所稱(chēng)的角正弦值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若f(x)=5cosx,則f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.點(diǎn)(x,y)滿足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,則x2+y2-8x-10y的取值范圍為[-23,-16].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知直線l的方程為3x-4y+4=0
(1)求過(guò)點(diǎn)(-2,2)且與直線l垂直的直線方程;
(2)求與直線l平行且距離為2的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案