【題目】已知函數(shù)
(1)設,試討論的單調性;
(2)若函數(shù)在上有最大值,求實數(shù)a的取值范圍
【答案】(1)在上單調遞增,在上單調遞減;(2)
【解析】
(1)計算,,討論,兩種情況,計算得到答案.
(2)討論,,三種情況,求導得到函數(shù)單調區(qū)間,,由零點存在性定理,存在,使得,計算最值得到答案.
(1),令, ;
當時,,在上遞增,無減區(qū)間;
當時,令,則,令,則,
所以在上單調遞增,在上單調遞減;
(2)由(1)可知,當時,在上遞增,,
在上遞增,無最大值,不合題意;
當時,,在上遞減,
故,在上遞減,無最大值,不合題意;
當時,,由(1)可知在上單調遞增,在上單調遞減;
設,則;
令,則;令,則,
在上單調遞減,在單調遞增,,即,
由此,當時,,即.
所以,當時,.
取,則,且,
又因為,
所以由零點存在性定理,存在,使得;.
當時,,即;
當時,,即;
所以在上單調遞增,在上單調遞減,
故函數(shù)在上有最大值.
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系內,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)把曲線和直線化為直角坐標方程;
(2)過原點引一條射線分別交曲線和直線于,兩點,射線上另有一點滿足,求點的軌跡方程(寫成直角坐標形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求實數(shù)的值;
(2)證明:當時,在上有兩個極值點;
(3)設,若在上是單調減函數(shù)(為自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動著億萬人的心,八方馳援戰(zhàn)疫情,眾志成城克時難,社會各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護士支援湖北,現(xiàn)從這5人中任選2人定點支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護士被選中的概率為( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘數(shù)學家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)且的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內運動,則點所形成的阿氏圓的半徑為________;若點在長方體內部運動,為棱的中點,為的中點,則三棱錐的體積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的普通方程和直線的直角坐標方程;
(2)若直線與曲線相交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有50位工人組裝某種零件.下面的散點圖反映了工人們組裝每個零件所用的工時(單位:分鐘)與人數(shù)的分布情況.由散點圖可得,這50位工人組裝每個零件所用工時的中位數(shù)為___________.若將500個要組裝的零件分給每個工人,讓他們同時開始組裝,則至少要過_________分鐘后,所有工人都完成組裝任務.(本題第一空2分,第二空3分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com