【題目】已知數(shù)列的前n項(xiàng)和為,且.
(1) 證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2) 記,求數(shù)列的前n項(xiàng)和.
【答案】(1) 證明見(jiàn)解析,; (2).
【解析】
(1)運(yùn)用數(shù)列的遞推式:n=1時(shí),a1=S1,當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1,計(jì)算可得an=2an﹣1+1,即an+1=2(an﹣1+1),
由等比數(shù)列的定義和通項(xiàng)公式可得所求;
(2),運(yùn)用錯(cuò)位相減法求和即可
(1)證明:(n∈N*),
可得n=1時(shí),a1=S1+1=2a1,
即a1=1,
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1,
Sn+n=2an,Sn﹣1+n﹣1=2an﹣1,
相減可得an+1=2an﹣2an﹣1,
可得an=2an﹣1+1,即an+1=2(an﹣1+1),
則數(shù)列{an+1}為首項(xiàng)為2,公比為2的等比數(shù)列,
可得an+1=2n,即an=2n﹣1;
(2)
前n項(xiàng)和為Tn=①
2Tn=②
① ②相減可得﹣Tn=2+2(22+…+2n)﹣=
化簡(jiǎn)可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線與C交于A,B兩點(diǎn),且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求k的值;
(3)求面積取最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,底面.
(1)求證:平面;
(2)若,直線與平面所成的角為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,,數(shù)列中,,滿足.
(1) 求出,的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使得時(shí),對(duì)所有的恒成立的最大正整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)、兩點(diǎn),且圓心在直線上.
(1)求圓C的方程;
(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn),左右焦點(diǎn)為,且橢圓C關(guān)于直線對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn)。
(I)求橢圓C方程;
(II)圓D:與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓D的直徑,且直線F1R的斜率大于1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個(gè)參賽隊(duì)伍只比賽一場(chǎng)),有高一、高二、高三共三個(gè)隊(duì)參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場(chǎng)勝負(fù)相互獨(dú)立,勝者記1分,負(fù)者記0分,規(guī)定:積分相同時(shí),高年級(jí)獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級(jí)污水處理池,由于地形限制,長(zhǎng)、寬都不能超過(guò)16米,如果池外周壁建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)為每米248元,池底建造單價(jià)為每平方米80元(池壁厚度忽略不計(jì),且池?zé)o蓋).
(1)寫出總造價(jià)y(元)與污水處理池長(zhǎng)x(米)的函數(shù)關(guān)系式,并指出其定義域;
(2)求污水處理池的長(zhǎng)和寬各為多少時(shí),污水處理池的總造價(jià)最低?并求最低總造價(jià).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com