已知函數(shù)的定義域?yàn)閰^(qū)間.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.

(1)函數(shù)的極大值為,極小值為.
(2)當(dāng)上取最大值.當(dāng), 在上取最小值.

解析試題分析:(1)遵循“求導(dǎo)數(shù)、求駐點(diǎn)、確定區(qū)間導(dǎo)數(shù)值的正負(fù)、求極值”.
(2)遵循“求導(dǎo)數(shù)、求駐點(diǎn)、確定區(qū)間導(dǎo)數(shù)值的正負(fù)、求極值、比較區(qū)間端點(diǎn)函數(shù)值、求最值”.
本題利用“表解法”,形象直觀,易于理解.
試題解析:
(1),解得:.
通過計(jì)算并列表:










 





 


增加
 極大值   
 減少
極小值
增加

所以,函數(shù)的極大值為,極小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列定積分.
(1)                       (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),令,(),()為曲線上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當(dāng)時(shí),求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時(shí),曲線上總存在相異兩點(diǎn)、,使得曲線
在點(diǎn)、處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案