已知函數(shù),(其中常數(shù)).
(1)當時,求的極大值;
(2)試討論在區(qū)間上的單調性;
(3)當時,曲線上總存在相異兩點、,使得曲線
在點、處的切線互相平行,求的取值范圍.

(1)函數(shù)的極大值為;(2)詳見解析;(3)的取值范圍是.

解析試題分析:(1)將代入函數(shù)的解析式,利用導數(shù)求出函數(shù)的極大值即可;(2)先求出導數(shù),并求出方程的兩根,對這兩根的大小以及兩根是否在區(qū)間進行分類討論,并借助導數(shù)正負確定函數(shù)在區(qū)間上的單調區(qū)間;(3)先利用函數(shù)兩點處的切線平行得到,通過化簡得到,利用基本不等式轉化為
上恒成立,于是有,進而求出的取值范圍.
試題解析:(1)當時,,定義域為,
所以,
,解得,列表如下:

<style id="elmed"><fieldset id="elmed"></fieldset></style>














極小值

極大值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(I)當時,求的單調區(qū)間
(Ⅱ)若不等式有解,求實數(shù)m的取值菹圍;
(Ⅲ)定義:對于函數(shù)在其公共定義域內的任意實數(shù),稱的值為兩函數(shù)在處的差值。證明:當時,函數(shù)在其公共定義域內的所有差值都大干2。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)其中,曲線在點處的切線方程為
(I)確定的值;
(II)設曲線在點處的切線都過點(0,2).證明:當時,
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)如果當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為區(qū)間.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),是大于零的常數(shù).
(Ⅰ)當時,求的極值;
(Ⅱ)若函數(shù)在區(qū)間上為單調遞增,求實數(shù)的取值范圍;
(Ⅲ)證明:曲線上存在一點,使得曲線上總有兩點,且成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)上有零點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=+3-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≥+ax+1在x≥時恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是正實數(shù),設函數(shù)。
(Ⅰ)設,求的單調區(qū)間;
(Ⅱ)若存在,使成立,求的取值范圍。

查看答案和解析>>

同步練習冊答案