解:(Ⅰ)f′(x)=
(x>0)(2分)
f′(2)=-
=1得a=-2,f(x)=-2lnx+2x-3
∴g(x)=x
3+(
+2)x
2-2x,
∴g'(x)=3x
2+(m+4)x-2(6分)
∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2
∴
(8分)
由題意知:對于任意的t∈[1,2],g′(t)<0恒成立,
所以有:
,∴-
<m<-9(10分)
(II)令a=-1此時f(x)=-lnx+x-3,所以f(1)=-2,
由(Ⅰ)知f(x)=-lnx+x-3在(1,+∞)上單調(diào)遞增,
∴當x∈(1,+∞)時f(x)>f(1),即-lnx+x-1>0,
∴l(xiāng)nx<x-1對一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,則有0<lnn<n-1,
∴0<
<
,
∴
•
•
…
<
•
•
••
=
(n≥2,n∈N*).
分析:(I)根據(jù)點(2,f(2))處的切線的傾斜角為45°,即切線斜率為1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù)可知:
,于是可求m的范圍.
(II)是近年來高考考查的熱點問題,即與函數(shù)結(jié)合證明不等式問題,常用的解題思路是利用前面的結(jié)論構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,對于函數(shù)取單調(diào)區(qū)間上的正整數(shù)自變量n有某些結(jié)論成立,進而解答出這類不等式問題的解.
點評:本題考查利用函數(shù)的導(dǎo)數(shù)來求函數(shù)的單調(diào)區(qū)間,已知函數(shù)曲線上一點求曲線的切線方程即對函數(shù)導(dǎo)數(shù)的幾何意義的考查,考查求導(dǎo)公式的掌握情況.含參數(shù)的數(shù)學(xué)問題的處理,構(gòu)造函數(shù)求解證明不等式問題.