已知,平面上三個向量的模均為1,它們之間的夾角均為120°,

求:(1)證明

(2),求k的取值范圍。

 

【答案】

【解析】解:(1)證明:

(2)

 

 

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上三個向量
a
b
,
c
的模均為1,它們相互之間的夾角均為120°.
(1)求證:(
a
-
b
)⊥
c
;
(2)若|k
a
+
b
+
c
|>1 (k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上三個向量
a
 ,
b
 ,
c
,其中
a
=(1, 2)
,
(1)若|
c
|=2
5
,且
a
c
,求
c
的坐標(biāo);
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
)
,求
a
b
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上三個向量|
a
|=|
b
|=|
c
|=2,它們之間的夾角都是120°.
(I)求
a
c
的值.
(II)求證:(
a
-
b
)⊥
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇金練·高中數(shù)學(xué)、全解全練、數(shù)學(xué)必修4 題型:044

已知:平面上三個向量a、b、c的模均為1,它們相互之間的夾角均為120°.

(1)

求證:(ab)⊥c;

(2)

若|kabc|>1(k∈R),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案