分析 根據不定積分的線性運算法則,根據基本不定積分積分的公式,計算即可.
解答 解:(1)∫$\frac{1}{\sqrt{x}+\sqrt{x+1}}$dx=${∫}_{\;}^{\;}$($\sqrt{x+1}$-$\sqrt{x}$)dx=${∫}_{\;}^{\;}$$\sqrt{x+1}$dx-${∫}_{\;}^{\;}$$\sqrt{x}$)dx=$\frac{2}{3}(x+1)^{\frac{3}{2}}$-$\frac{2}{3}{x}^{\frac{3}{2}}$+c,
(2)∫$\frac{1}{(x-1)(x+2)}$dx=3${∫}_{\;}^{\;}$($\frac{1}{x-1}$-$\frac{1}{x+2}$)dx=3${∫}_{\;}^{\;}$$\frac{1}{x-1}$dx-3${∫}_{\;}^{\;}$$\frac{1}{x+2}$dx=3ln|x-1|+3ln|x+2|+c=3ln|(x-1)(x+2)|+c,
(3)∫$\frac{{x}^{2}}{{a}^{2}+{x}^{2}}$dx=${∫}_{\;}^{\;}$(1-$\frac{{a}^{2}}{{x}^{2}+{a}^{2}}$)dx=${∫}_{\;}^{\;}$dx-${∫}_{\;}^{\;}$$\frac{{a}^{2}}{{x}^{2}+{a}^{2}}$dx=x-${∫}_{\;}^{\;}$$\frac{1}{1+(\frac{x}{a})^{2}}$dx=x-a${∫}_{\;}^{\;}$$\frac{1}{1+(\frac{x}{a})^{2}}$d($\frac{x}{a}$)=x-arctan$\frac{x}{a}$+c
點評 本題主要考查求不定積分的方法,要求與一定的計算量,以及一些固定函數不定積分的記憶,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | P?Q | B. | P?Q | C. | P=Q | D. | P∩Q=∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-3,0)∪(3,+∞) | B. | (-3,0)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-∞,-3)∪(0,3) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com