【題目】某消防機(jī)構(gòu)為四個(gè)小區(qū)的居民代表進(jìn)行消防安全知識(shí)宣傳.在代表中,按分層抽樣的方式抽取了10名“幸運(yùn)之星”,“幸運(yùn)之星”每人獲得一份紀(jì)念品.相關(guān)數(shù)據(jù)如下:
小區(qū) | A | B | C | D |
代表人數(shù) | 45 | 60 | 30 | 15 |
(I)求此活動(dòng)中各小區(qū)“幸運(yùn)之星”的人數(shù);
(II)從B小區(qū)和C小區(qū)的“幸運(yùn)之星”中任選兩人進(jìn)行后續(xù)的活動(dòng),求這兩個(gè)人均來(lái)自B小區(qū)的概率;
(III)消防機(jī)構(gòu)在B小區(qū)內(nèi),對(duì)參加問(wèn)答活動(dòng)的居民進(jìn)行了是否有興趣參加消防安全培訓(xùn)的問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
有興趣 | 無(wú)興趣 | 合計(jì) | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計(jì) | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為有興趣參加消防安全培訓(xùn)與性別有關(guān)系?
臨界值表:
參考公式:,其中
.
【答案】見解析
【解析】(I) 四個(gè)小區(qū)“幸運(yùn)之星”的人數(shù)分別為:
;
;
;
.…………………………4分
(II)由(I)得小區(qū)和
小區(qū)的“幸運(yùn)之星”的人數(shù)分別為
和
.設(shè)
小區(qū)的“幸運(yùn)之星”為
,
小區(qū)的“幸運(yùn)之星”為
,則從中任選兩人的所有基本結(jié)果為:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15種,………6分
其中這兩個(gè)人均來(lái)自B小區(qū)的基本結(jié)果為:,
,
,
,
,
,共6種,所以所求概率為
.………………8分
(III)由表中數(shù)據(jù)計(jì)算得的觀測(cè)值為
,………10分
因?yàn)?/span>,所以能在犯錯(cuò)誤的概率不超過(guò)
的前提下認(rèn)為有興趣參加消防安全培訓(xùn)與性別有關(guān)系.……………12分
【命題意圖】本題考查古典概型、獨(dú)立性檢驗(yàn)等基礎(chǔ)知識(shí),意在考查統(tǒng)計(jì)和概率的思想和運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線
在點(diǎn)
的切線方程;
(2)對(duì)一切,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)時(shí),試討論
在
內(nèi)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)
與
的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),向量
分別為平面直角坐標(biāo)內(nèi)
軸正方向上的單位向量,若向量
,
, ,且
.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)橢圓,曲線
的切線
交橢圓
于
、
兩點(diǎn),試證:
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與軸的正半軸重合,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線的參數(shù)方程為
(
為參數(shù)),直線
交曲線
于
兩點(diǎn),若
恰好為線段
的三等分點(diǎn),求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為
(
為參數(shù),
).
(Ⅰ)當(dāng)時(shí),若曲線
上存在
兩點(diǎn)關(guān)于點(diǎn)
成中心對(duì)稱,求直線
的參數(shù)方程;
(Ⅱ)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為
的直線
與曲線
相交于
兩點(diǎn),若
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知離心率為的橢圓
:
經(jīng)過(guò)點(diǎn)
,且
是頂點(diǎn)均不與橢圓四個(gè)頂點(diǎn)重合的橢圓
一個(gè)內(nèi)接四邊形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,試判斷
的面積是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
,
為
上一點(diǎn),
、
為橢圓
的兩焦點(diǎn),
的周長(zhǎng)為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓,曲線
的切線
交橢圓
于
、
兩點(diǎn),試證:
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=3cos(2x﹣ )的圖象,可以將函數(shù)y=3sin2x的圖象( )
A.沿x軸向左平移 單位
B.沿x軸向右平移 單位
C.沿x軸向左平移 單位
D.沿x軸向右平移 單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com