12.若直線l1:(a+2)x+(a-1)y+8=0與直線l2:(a-3)x+(a+2)y-7=0垂直,那么a的值為±2.

分析 對a分類討論,利用兩條直線相互垂直的充要條件即可得出.

解答 解:a=1時,兩條直線分別化為:3x+8=0,-2x+3y-7=0,此時兩條直線不垂直,舍去.
a=-2時,兩條直線分別化為:-3x+8=0,-5x-7=0,此時兩條直線垂直,因此a=-2滿足條件.
a≠-2,1時,由-$\frac{a+2}{a-1}$×$(-\frac{a-3}{a+2})$=-1,化為:a=2.滿足條件.
綜上可得:a=±2.
故答案為:±2.

點評 本題考查了兩條直線相互垂直的充要條件、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.由曲線y=$\sqrt{2x}$,直線y=x-4及y軸所圍成的封閉圖形的面積為( 。
A.$\frac{40}{3}$B.$\frac{64}{3}$C.16$\sqrt{2}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)點A(x,y)在區(qū)域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,點B(y,-x),設(shè)向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,則點C構(gòu)成的幾何圖形的面積是(  )
A.3B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x∈($\frac{1}{e}$,1),設(shè)a=lnx,$b={2^{ln\frac{1}{x}}}$,c=elnx,把a,b,c從大到小排列為b>c>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.四棱錐S-ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點,則直線BM與SC所成的角的余弦值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)$\frac{2+i}{i}$(i是虛數(shù)單位)的虛部為( 。
A.-2iB.-2C.2D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)={(\frac{1}{3})^x}-{log_2}x$,正實數(shù)a、b、c成公差為正數(shù)的等差數(shù)列,且滿足f(a)+f(b)+f(c)<0,若實數(shù)x0是函數(shù)f(x)的一個零點,那么下列不等式中不可能成立的是( 。
A.x0<aB.a<x0<bC.b<x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標(biāo)為($\frac{π}{3}$,$\sqrt{2}$),此點到相鄰最低點間的曲線與x軸交于點($\frac{4π}{3}$,0),若φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求這條曲線的函數(shù)表達(dá)式;
(2)求此函數(shù)在[-2π,2π]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,則\frac{sinα+cosα}{sinα-cosα}$=3.

查看答案和解析>>

同步練習(xí)冊答案