7.已知約束條件$\left\{{\begin{array}{l}{x+y-3≥0}\\{2x+y-5≥0}\end{array}}\right.$,目標(biāo)函數(shù)z=ax+y有最小值4,則a=$\frac{3}{2}$.

分析 首先畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義得到目標(biāo)函數(shù)過(guò)邊界點(diǎn)A時(shí)取最小值,得到所求.

解答 解:約束條件對(duì)應(yīng)的平面區(qū)域如圖,

由$\left\{\begin{array}{l}{x+y-3=0}\\{2x+y-5=0}\end{array}\right.$,得到交點(diǎn)A(2,1),
由目標(biāo)函數(shù)的幾何意義,當(dāng)且僅當(dāng)目標(biāo)函數(shù)z=ax+y過(guò)交點(diǎn)A(2,1)時(shí)z最小值為4,且-2≤-a≤-1時(shí),
目標(biāo)函數(shù)z=ax+y有最小值,所以4=2a+1,故a=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題;利用數(shù)形結(jié)合以及目標(biāo)函數(shù)的幾何意義求最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在△AOB中,OC是邊AB的中線,P是OC的中點(diǎn),直線l與OB,OA分別交于點(diǎn)M,N,若$\overrightarrow{OM}$=$\frac{3}{8}$$\overrightarrow{OB}$,$\overrightarrow{OA}$=x$\overrightarrow{ON}$,則x=( 。
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的遞推公式an-an-1=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,且a1=$\sqrt{2}$,求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx(x∈[0,$\frac{π}{2}$]),若ω=1,則函數(shù)f(x)的值域?yàn)閇$\frac{1}{2}$,1];若f(x)在[0,$\frac{π}{2}$]為增函數(shù),則ω的取值范圍是[0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且acosB-bcosA=$\frac{1}{2}$c,則tan(A-B)的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,-1),則2$\overrightarrow{a}$+$\overrightarrow$=(3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知隨機(jī)變量X~N(0,σ2),且P(X>2)=0.1,則P(-2≤X≤0)=( 。
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知z是復(fù)數(shù),z+2i,$\frac{z}{2-i}$均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z-ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)i為虛數(shù)單位,若$\frac{a+2i}{b-i}$=i2015(a,b∈R),則復(fù)數(shù)a+b=-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案