2.橢圓$\frac{{x}^{2}}{a+8}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{1}{2}$,則a的值為( 。
A.10或-$\frac{7}{2}$B.4或-$\frac{5}{4}$C.4或-$\frac{7}{2}$D.10或-$\frac{5}{2}$

分析 對(duì)橢圓的焦點(diǎn)分類討論,利用橢圓的標(biāo)準(zhǔn)方程及其離心率計(jì)算公式即可得出.

解答 解:橢圓的焦點(diǎn)在x軸上時(shí),設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),其中c=$\sqrt{{a}^{2}-^{2}}$,則橢圓的離心率e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}-^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$.
同理可得:當(dāng)橢圓的焦點(diǎn)在y軸上時(shí),設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{^{2}}+\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0),其中c=$\sqrt{{a}^{2}-^{2}}$,則橢圓的離心率e=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$.
因此可得:當(dāng)橢圓的焦點(diǎn)在x軸上時(shí),e=$\frac{1}{2}$=$\sqrt{1-\frac{9}{a+8}}$,解得a=4.
當(dāng)橢圓的焦點(diǎn)在y軸上時(shí),e=$\frac{1}{2}$=$\sqrt{1-\frac{a+8}{9}}$,解得a=$-\frac{5}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù) f (x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1)時(shí),f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+1,-1≤x<0}\\{x+\frac{7}{4},0≤x<1}\end{array}\right.$,則f[f($\frac{3}{2}$)]=$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過拋物線y2=2px(p>0)的焦點(diǎn)F垂直于對(duì)稱軸的直線交拋物線于A,B兩點(diǎn),若線段AB的長為8,則p值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$,則下列結(jié)論正確的是(  )
A.f(x)的周期為2πB.f(x)在區(qū)間(0,$\frac{π}{4}$)內(nèi)單調(diào)遞增
C.f(x)的一個(gè)對(duì)稱中心為($\frac{π}{3}$,0)D.當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的值域?yàn)閇-2$\sqrt{3}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的值域:
(1)y=log${\;}_{\frac{1}{2}}$$\sqrt{4-{x}^{2}}$;
(2)y=$\frac{{2}^{x}+1}{{2}^{x}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=a+$\frac{a}{x^2}-\frac{5}{x}$,對(duì)?x∈(0,+∞),有f(x)≥0,則實(shí)數(shù)a的取值范圍是( 。
A.$[{\frac{5}{2},+∞})$B.$({\frac{5}{2},+∞})$C.$[{\frac{3}{2},+∞})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.當(dāng)實(shí)數(shù)a在區(qū)間[1,6]隨機(jī)取值時(shí),函數(shù)f(x)=-x2+ax+1在區(qū)間(2,+∞)上是單調(diào)減函數(shù)的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知p:-2<a<0,?q:關(guān)于x的不等式x2+ax-2a2-3a+3<0的解集是空集,則?p是q的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知有1張假紙幣和4張不同面值的真紙幣,現(xiàn)需要通過權(quán)威檢測(cè)工具找出假紙幣,將假紙幣上交銀行,每次隨機(jī)檢測(cè)一張紙幣,檢測(cè)后不放回,直到檢測(cè)出假紙幣或者檢測(cè)出4張真紙幣時(shí),檢測(cè)結(jié)束.
(Ⅰ)求第1次檢測(cè)的紙幣是假紙幣的概率;
(Ⅱ)求第3次檢測(cè)的紙幣是假紙幣的概率;
(Ⅲ)若每檢測(cè)一張紙幣需要2分鐘,設(shè)X表示檢測(cè)結(jié)束所需要的時(shí)間,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案