8.已知a∈R,則“a<3”是“|x+2|+|x-1|>a恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用絕對(duì)值不等式的性質(zhì)求出a的范圍,結(jié)合充分條件和必要條件的定義是解決本題的關(guān)鍵.

解答 解:∵|x+2|+|x-1≥|x+2-x+1|=3,
∴若|x+2|+|x-1|>a恒成立,則a<3,
即“a<3”是“|x+2|+|x-1|>a恒成立”的充要條件,
故選:C

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,結(jié)合絕對(duì)值不等式的性質(zhì)求出a的范圍是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為捍衛(wèi)釣魚(yú)島及其附屬島嶼的領(lǐng)土主權(quán),中國(guó)派出艦船“唐山號(hào)”、“石家莊號(hào)”和“邯鄲號(hào)”在釣魚(yú)島領(lǐng)海巡航.某日,正巡邏在A處的“唐山號(hào)”突然發(fā)現(xiàn)來(lái)自P處的疑似敵艦的某信號(hào),發(fā)現(xiàn)信號(hào)時(shí)“石家莊號(hào)”和“邯鄲號(hào)”正分別位于如圖所示的B、C兩處,其中A在B的正東方向相距6海里處,C在B的北偏西30°方向相距4海里處.由于B、C比A距P更遠(yuǎn),因此,4秒后B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1海里),試確定疑似敵艦相對(duì)于A點(diǎn)“唐山號(hào)”的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則$\overline{z}$=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)命題p:?x∈(-∞,0),2x<x2,則¬p為( 。
A.$?{x_0}∈[{0,+∞}),{2^{x_0}}≥{x_0}^2$B.$?{x_0}∈({-∞,0}),{2^{x_0}}≥{x_0}^2$
C.?x∈(-∞,0),2x≥x2D.?x∈[0,+∞),2x<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若正實(shí)數(shù)x,y滿(mǎn)足x2+2xy-1=0,則2x+y的最小值為$\sqrt{3}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,由拋物線y2=8x與直線x+y-6=0及x軸所圍成的圖形(圖中陰影部分)的面積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.幾年來(lái),網(wǎng)上購(gòu)物風(fēng)靡,快遞業(yè)迅猛發(fā)展,某市的快遞業(yè)務(wù)主要由兩家快遞公司承接,即圓通公司與申通公司:“快遞員”的工資是“底薪+送件提成”:這兩家公司對(duì)“快遞員”的日工資方案為:圓通公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;申通公司規(guī)定快遞員每天底薪為120元,每日前83件沒(méi)有提成,超過(guò)83件部分每件提成10元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司各隨機(jī)抽取一名快遞員并記錄其100天的送件數(shù),得到如下條形圖:
(1)求申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;
(2)若將頻率視為概率,回答下列問(wèn)題:
①記圓通公司的“快遞員”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)過(guò)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a,b∈(0,+∞),則“a>b”是“l(fā)ogab<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=sinxcosx+$\sqrt{3}$cos(π-x)cosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案