18.已知函數(shù)f(x)=sinxcosx+$\sqrt{3}$cos(π-x)cosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期.
(Ⅱ)x∈[0,$\frac{π}{2}$]上時,求出內層函數(shù)的取值范圍,結合三角函數(shù)的圖象和性質,即得f(x)的最大值和最小值.

解答 解:函數(shù)f(x)=sinxcosx+$\sqrt{3}$cos(π-x)cosx
化簡可得:f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x=$\frac{1}{2}$sin2x$-\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)$-\frac{\sqrt{3}}{2}$
(Ⅰ)f(x)的最小正周期T=$\frac{2π}{2}=π$
(Ⅱ)∵x∈[0,$\frac{π}{2}$]上,
∴2x-$\frac{π}{3}$∈[$-\frac{π}{3}$,$\frac{2π}{3}$]
當2x-$\frac{π}{3}$=$-\frac{π}{3}$,即x=0時,函數(shù)f(x)取得最小值為$-\sqrt{3}$.
當2x-$\frac{π}{3}$=$\frac{π}{2}$,即x=$\frac{5π}{12}$時,函數(shù)f(x)取得最大值為1-$\frac{\sqrt{3}}{2}$.
∴f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值為1-$\frac{\sqrt{3}}{2}$,最小值為$-\sqrt{3}$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a∈R,則“a<3”是“|x+2|+|x-1|>a恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 5x-y-6≤0.\end{array}\right.$若z=x+my的最小值是-5,則實數(shù)m取值集合是( 。
A.{-4,6}B.$\left\{{-\frac{7}{4},6}\right\}$C.$\left\{{-4,-\frac{7}{4}}\right\}$D.$\left\{{-4,-\frac{7}{4},6}\right\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤m}\\{{x}^{2},x>m}\end{array}\right.$,函數(shù)g(x)=f(x)-k.
(1)當m=2時,若函數(shù)g(x)有兩個零點,則k的取值范圍是(4,8];
(2)若存在實數(shù)k使得函數(shù)g(x)有兩個零點,則m的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某學校為了提高學生綜合素質、樹立社會主義榮辱觀、發(fā)展創(chuàng)新能力和實踐能力、促進學生健康成長,開展評選“校園之星”活動.規(guī)定各班每10人推選一名候選人,當各班人數(shù)除以10的余數(shù)大于7時再增選一名候選人,那么,各班可推選候選人人數(shù)y與該班人數(shù)x之間的函數(shù)關系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為(  )
A.y=[$\frac{x}{10}$]B.y=[$\frac{x+2}{10}$]C.y=[$\frac{x+3}{10}$]D.y=[$\frac{x+4}{10}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=lg(cosx-$\frac{\sqrt{3}}{2}$)的定義域為(  )
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$)(k∈π)
C.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)(k∈Z)D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖是一個幾何體的三視圖,則這個幾何體的表面積為11+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+2y=3,當xy取得最大值時,過點P(x,y)引圓:(x-$\frac{1}{2}$)2+(y+$\frac{1}{4}$)2=$\frac{1}{2}$的切線,則此切線段的長度為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算
(1)$\frac{1-2i}{3+4i}$  
(2)$\frac{{2-\sqrt{3}i}}{{2+\sqrt{3}i}}$.

查看答案和解析>>

同步練習冊答案