A. | 6 | B. | $2+4\sqrt{2}$ | C. | $4+2\sqrt{5}$ | D. | $2\sqrt{13}$ |
分析 利用拋物線的定義由|AF|=4得到A到準(zhǔn)線的距離為4,即可求出點A的坐標(biāo),根據(jù):“|PA|+|PE|”相當(dāng)于在準(zhǔn)線上找一點,使得它到兩個定點的距離之和最小,最后利用平面幾何的方法即可求出距離之和的最小值.
解答 解:∵|AF|=4,由拋物線的定義得,
∴A到準(zhǔn)線的距離為4,即A點的縱坐標(biāo)為-2,
又點A在拋物線上,∴從而點A的坐標(biāo)A(8,-2);
E關(guān)于準(zhǔn)線的對稱點的坐標(biāo)為B(0,4)
則|PA|+|PE|的最小值為:
|AB|=$\sqrt{(4+2)^{2}+(0-4)^{2}}$=2$\sqrt{13}$.
故選D.
點評 此題考查學(xué)生靈活運(yùn)用拋物線的簡單性質(zhì)解決最小值問題,靈活運(yùn)用點到點的距離、對稱性化簡求值,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5.2 | B. | 6.6 | C. | 7.1 | D. | 8.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{2}$ | B. | -2 | C. | $-\frac{π}{3}-1$ | D. | $-\frac{π}{6}-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤1} | B. | {1,2} | C. | {-1,0,1 } | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com