8.某地有A、B、C、D四人先后感染了某種傳染病,其中只有A到過傳染地區(qū),B肯定是受A傳染的.對于C,因為難以斷定他是受A還是受B傳染的,于是假定他受A和受B傳染的概率都是$\frac{1}{2}$,同樣也假定D受A、B和C傳染的概率都是$\frac{1}{3}$,在這種假定之下,B、C、D中直接受A傳染的人數(shù)為2的概率為$\frac{1}{2}$.

分析 因為直接受A感染的人至少是B,而C、D二人也有可能是由A感染的,設(shè)B、C、D直接受A感染為事件B、C、D,則B、C、D是相互獨立的.利用概率公式求解即可.

解答 解:根據(jù)題意得出:因為直接受A感染的人至少是B,而C、D二人也有可能是由A感染的,
p(B)=1,設(shè)B、C、D直接受A感染為事件B、C、D,
則B、C、D是相互獨立的,
并且P(B)=1,P(C)=$\frac{1}{2}$,P(D)=$\frac{1}{3}$,
表明除了B外,C、D二人中恰有1人是由A感染的,
∴P(C$\overline{D}$+$\overline{C}$D)=P(C)P($\overline{D}$)+P($\overline{C}$)P(D)=$\frac{1}{2}×\frac{2}{3}$$+\frac{1}{2}×\frac{1}{3}=\frac{1}{2}$,
∴B、C、D中直接受A傳染的人數(shù)為2的概率為$\frac{1}{2}$.
故答案為:$\frac{1}{2}$

點評 本題考查了概率的求解,獨立事件的求解,學生的閱讀能力,是中檔題,解題時要認真審題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,PA⊥矩形ABCD所在的平面,PA=AD,且M,N分別是AB,PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥平面PCD;
(3)若PA=2,AB=4,求三棱錐B-PMC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}滿足a1=1,a2=$\frac{2}{3}$ 且 $\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n-1}}$=$\frac{2}{{a}_{n}}$(n≥2),則a15等于( 。
A.$\frac{1}{8}$B.$\frac{1}{7}$C.$\frac{1}{3}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.《九章算術(shù)》有這樣一個問題:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和為三百九十里,問第六日所走時數(shù)為150里.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若x>0,則${x^2}+\frac{3}{2x}$的最小值為( 。
A.1B.$\sqrt{6}$C.$\frac{{3\root{3}{9}}}{4}$D.$\frac{{3\root{3}{36}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的序號是④.
①PB⊥AD;②二面角A-PB-C為直二面角; ③直線BC∥平面PAE;④直線PD與平面ABC所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知點F為拋物線y=-$\frac{1}{8}{({x-4})^2}$的焦點,E為拋物線的頂點,點P是拋物線準線上一動點,點A在拋物線上,且|AF|=4,則|PA|+|PE|的最小值為( 。
A.6B.$2+4\sqrt{2}$C.$4+2\sqrt{5}$D.$2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.擲兩枚均勻的骰子,已知點數(shù)不同,則至少有一個是3點的概率為(  )
A.$\frac{3}{10}$B.$\frac{5}{18}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.定義集合A、B的一種運算:A*B={x|x1×x2,其中x1∈A,x2∈B},若A={1,2,3,5},B={1,2},則A*B中的所有元素之和為為( 。
A.30B.31C.32D.34

查看答案和解析>>

同步練習冊答案