分析 根據(jù)f(x)存在反函數(shù)f-1(x),得出f(x)是定義域上的單調函數(shù),求出a的值以及f(x)的解析式,即可求出f(1)+f-1(-4)的值.
解答 解:∵函數(shù)f(x)=(x-a)|x|=$\left\{\begin{array}{l}{{x}^{2}-ax,x≥0}\\{{-x}^{2}+ax,x<0}\end{array}\right.$,
且f(x)存在反函數(shù)f-1(x),
∴f(x)是定義域R的單調增函數(shù),
∴a=0,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{-x}^{2},x<0}\end{array}\right.$,
∴f(1)+f-1(-4)=1+(-2)=-1.
故答案為:-1.
點評 本題考查了反函數(shù)的定義與性質的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,0) | B. | (-2,1) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{15}}{4}$ | D. | -$\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -7 | B. | -5 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com