14.已知函數(shù)f(x)=x3+mx2+nx+p在x=-$\frac{2}{3}$和x=1處都取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x∈[-2,2],有f(x)≥-p2-ap-6恒成立,其中a∈[-1,1].求p的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于m,n的方程,求出m,n的值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出f(x)在[-2,2]上的最小值,問(wèn)題轉(zhuǎn)化為解不等式p2+(a+1)p≥0,解出即可.

解答 解;(1)f(x)=x3+mx2+nx+p,f'(x)=3x2+2mx+n
由 $\left\{\begin{array}{l}{f′(-\frac{2}{3})=3×\frac{4}{9}+2m×(-\frac{2}{3})+n=0}\\{f′(1)=3+2m+n=0}\end{array}\right.$,解得,$\left\{\begin{array}{l}{m=-\frac{1}{2}}\\{n=-2}\end{array}\right.$,
代回原函數(shù)得,f(x)=x3-$\frac{1}{2}$x2-2x+p,f'(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

x(-∞,-$\frac{2}{3}$) -$\frac{2}{3}$(-$\frac{2}{3}$,1)1(1,+∞)
f′(x)+0-0+
f(x)遞增極大值遞減極小值遞增
所以函數(shù)f(x)的遞增區(qū)間是(-∞,-$\frac{2}{3}$)和(1,+∞),遞減區(qū)間是(-$\frac{2}{3}$,1).
(2)由(1)得:f(x)的遞增區(qū)間是[-2,-$\frac{2}{3}$)和(1,2],遞減區(qū)間是(-$\frac{2}{3}$,1),
∴f(x)的最小值是f(-2)或f(1),而f(-2)=p-6,f(1)=p-$\frac{3}{2}$,
故f(-2)最小,
f(x)≥-p2-ap-6恒成立,即p2+(a+1)p≥0①,
a∈[-1,1]時(shí),0≤a+1≤2,
解①得:p≥0或p≤-a-1,
即p的范圍是(-∞,-a-1]∪[0,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x,y滿足約束條件$\left\{{\begin{array}{l}{\sqrt{3}x-y+\sqrt{3}≥0}\\{\sqrt{3}x+y-\sqrt{3}≤0}\\{y≥0}\end{array}}\right.$,則當(dāng)$\frac{y+1}{x+3}$取最大值時(shí),x+y的值為( 。
A.-1B.1C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知斜三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,側(cè)面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求證:BC⊥AB1;
(Ⅱ)若AB=2,AB1=$\sqrt{6}$,求二面角C-AB1-C1(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=a$\sqrt{x+1}$+$\frac{1}{x}$的極大值點(diǎn)x0∈(-1,-$\frac{1}{2}$),則實(shí)數(shù)a的取值范圍為( 。
A.(0,4$\sqrt{2}$)B.(1,4)C.(-∞,4$\sqrt{2}$)D.($\sqrt{2}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,過(guò)點(diǎn)P作⊙O的切線PA,A為切點(diǎn),割線PB交⊙O于點(diǎn)B、C,R為⊙O上的點(diǎn),且有AC=AR.
(1)證明:∠PAC=∠ACR;
(2)若AB為⊙O的直徑,證明$\frac{PC}{AR}$=$\frac{PA}{AB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx+x2+x,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(-x),x<0\\ x-2,x≥0\end{array}\right.$若函數(shù)g(x)=a-|f(x)|有四個(gè)零點(diǎn)x1,x2,x3,x4,且x1<x2<x3<x4,則ax1x2+$\frac{{{x_3}+{x_4}}}{a}$的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-a|,同時(shí)滿足f(-2)≤4和f(2)≤4.
(1)求實(shí)數(shù)a的值;
(2)記函數(shù)f(x)的最小值為M,若$\frac{1}{m}$+$\frac{2}{n}$=M(m,n∈R*),求m+2n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在極坐標(biāo)系中,圓ρ=$\sqrt{3}$cosθ-sinθ(0≤θ<2π)的圓心的極坐標(biāo)是( 。
A.$({1,\frac{π}{6}})$B.$({1,\frac{5π}{6}})$C.$({1,\frac{7π}{6}})$D.$({1,\frac{11π}{6}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案