分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于m,n的方程,求出m,n的值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出f(x)在[-2,2]上的最小值,問(wèn)題轉(zhuǎn)化為解不等式p2+(a+1)p≥0,解出即可.
解答 解;(1)f(x)=x3+mx2+nx+p,f'(x)=3x2+2mx+n
由 $\left\{\begin{array}{l}{f′(-\frac{2}{3})=3×\frac{4}{9}+2m×(-\frac{2}{3})+n=0}\\{f′(1)=3+2m+n=0}\end{array}\right.$,解得,$\left\{\begin{array}{l}{m=-\frac{1}{2}}\\{n=-2}\end{array}\right.$,
代回原函數(shù)得,f(x)=x3-$\frac{1}{2}$x2-2x+p,f'(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x | (-∞,-$\frac{2}{3}$) | -$\frac{2}{3}$ | (-$\frac{2}{3}$,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,4$\sqrt{2}$) | B. | (1,4) | C. | (-∞,4$\sqrt{2}$) | D. | ($\sqrt{2}$,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({1,\frac{π}{6}})$ | B. | $({1,\frac{5π}{6}})$ | C. | $({1,\frac{7π}{6}})$ | D. | $({1,\frac{11π}{6}})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com