18.雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別為F1、F2,點(diǎn)P為雙曲線上任意一點(diǎn),點(diǎn)Q是以點(diǎn)P為圓心,|PF1|為半徑的圓上的任意點(diǎn),那么|QF2|( 。
A.有最小值8B.有最大值8C.有最小值4$\sqrt{5}$D.有最大值4$\sqrt{5}$

分析 求得雙曲線的a=4,運(yùn)用雙曲線的定義和圓的定義,結(jié)合P,Q,F(xiàn)2共線時(shí),|QF2|取得最小值2a.

解答 解:雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的a=4,
由雙曲線的定義可得|PF1-PF2|=2a=8,
由|PF1|=|PQ|,|PQ-PF2|≤|QF2|,
可得|QF2|≥2a=8,
即有P,Q,F(xiàn)2共線時(shí),|QF2|有最小值8.
故選:A.

點(diǎn)評 本題考查雙曲線的定義、方程和性質(zhì),注意運(yùn)用定義法和三點(diǎn)共線取得最值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,公差d>0,a1=2,其前n項(xiàng)為Sn(n∈N*).且a1,a4,S5+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an及前n項(xiàng)和Sn
(Ⅱ)若anbn=4,數(shù)列{bnbn+2}的前n項(xiàng)和為Tn,證明:對n∈N*,$\frac{4}{3}≤{T_n}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中,若雙曲線$\frac{{y}^{2}}{{m}^{2}+1}$-$\frac{{x}^{2}}{2m+6}$=1的離心率為$\sqrt{5}$,則實(shí)數(shù)m的值為1或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合P={x|4<x<10},Q={x|3<x<7},則P∪Q等于(  )
A.{x|3<x<7}B.{x|3<x<10}C.{x|3<x<4}D.{x|4<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.α,β,γ為不同的平面,a,b,c為三條不同的直線,則下列命題正確的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若a∥β,a∥b,則b∥β
C.若a∥α,b∥α,c⊥a,c⊥b,則c⊥αD.若a⊥γ,b⊥γ,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給定兩個(gè)單位向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,它們的夾角為60°.點(diǎn)C在以O(shè)為圓弧$\widehat{AB}$上運(yùn)動(dòng),若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則xy的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.下列各式有無最大值,若有,試求之.
(1)y=3x(5-3x)(0<x<$\frac{5}{3}$);
(2)y=$\frac{{x}^{2}}{{x}^{4}+9}$(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若存在過點(diǎn)(1,0)的直線與曲線y=x3和y=ax2+$\frac{15}{4}$x-9都相切,則a的值為(  )
A.-1或-$\frac{25}{64}$B.-$\frac{23}{38}$C.-2D.-3或-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則${a}_{1}^{2}$+${a}_{2}^{2}$+${a}_{3}^{2}$+…+${a}_{n}^{2}$=$\frac{1}{3}({4}^{n}-1)$.

查看答案和解析>>

同步練習(xí)冊答案