【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當(dāng)α= 時,求C1與C2的交點坐標(biāo);
(Ⅱ)過坐標(biāo)原點O做C1的垂線,垂足為A,P為OA中點,當(dāng)α變化時,求P點的軌跡的參數(shù)方程,并指出它是什么曲線.
【答案】解:(Ⅰ)當(dāng)α= 時,C1的普通方程為 ,C2的普通方程為x2+y2=1.
聯(lián)立方程組 ,
解得C1與C2的交點為(1,0) .
(Ⅱ)C1的普通方程為xsinα-ycosα-sinα=0①.
則OA的方程為xcosα+ysinα=0②,
聯(lián)立①②可得x=sin2α,y=-cosαsinα;
A點坐標(biāo)為(sin2α,-cosαsinα),
故當(dāng)α變化時,P點軌跡的參數(shù)方程為:
P點軌跡的普通方程 .
故P點軌跡是圓心為 ,半徑為 的圓
【解析】(1)根據(jù)題意結(jié)合已知條件求出直線的方程再聯(lián)立直線與圓的方程即可求出交點的坐標(biāo)。(2)首先聯(lián)立兩個方程求出點A的坐標(biāo)由角的變化得出點P的參數(shù)方程再根據(jù)極坐標(biāo)和直角坐標(biāo)的互化關(guān)系得出圓的標(biāo)準(zhǔn)方程進(jìn)而求出圓心坐標(biāo)以及半徑。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為- .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ( 為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)).
(1)當(dāng) 時,求函數(shù) 的單調(diào)區(qū)間;
(2)若函數(shù) 在 內(nèi)存在兩個極值點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
-1 | 1 | 3 | 1 | -1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)畫出函數(shù)的圖像并求出函數(shù)解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時,方程恰有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行 統(tǒng)計,樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計政府執(zhí)行此計劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,記函數(shù)的定義域為.
(1)求函數(shù)的定義域;
(2)若函數(shù)的最大值為2,求的值;
(3)若對于內(nèi)的任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
(1)求λ的值及數(shù)列{an}的通項公式;
(2)設(shè) ,且數(shù)列{bn}的前n項和為Sn , 求S2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個三等分點(靠近點B),記 ,則當(dāng)λ取最大值時,tan∠ACD= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com