分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)令f(x)=0,得:a=x2-3x+lnx,求出f(x)的最大值和最小值,通過討論a的范圍求出零點的個數(shù)即可.
解答 解:(1)∵${f^'}(x)=2x-3+\frac{1}{x}=\frac{{2{x^2}-3x+1}}{x}$=$\frac{(2x-1)(x-1)}{x}$,
令f′(x)>0,解得:x>1或0<x<$\frac{1}{2}$,令f′(x)<0,解得:$\frac{1}{2}$<x<1,
∴增區(qū)間是$({0,\frac{1}{2}})和({1,+∞})$,減區(qū)間是$({\frac{1}{2},1})$;
(2)令f(x)=0,得:a=x2-3x+lnx,
由${f^'}(x)=2x-3+\frac{1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
$f(\frac{1}{2})=-\frac{5}{4}-ln2$,f(1)=-2,
∴當$a∈(\frac{5}{4}-ln2,+∞)$有一個零點;
當$a=\frac{5}{4}-ln2$有兩個零點;
當$a∈(-2,\frac{5}{4}-ln2)$有三個零點;
當a=-2有兩個零點;
當a<-2有一個零點.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及函數(shù)零點,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | -$\frac{7}{8}$ | D. | -$\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$-$\frac{1}{2}$ | B. | $\frac{π}{4}$+$\frac{1}{2}$ | C. | $\frac{1}{2}$-$\frac{π}{4}$ | D. | $\frac{π}{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com