分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)令f(x)=0,得:a=x2-3x+lnx,求出f(x)的最大值和最小值,通過討論a的范圍求出零點(diǎn)的個數(shù)即可.
解答 解:(1)∵${f^'}(x)=2x-3+\frac{1}{x}=\frac{{2{x^2}-3x+1}}{x}$=$\frac{(2x-1)(x-1)}{x}$,
令f′(x)>0,解得:x>1或0<x<$\frac{1}{2}$,令f′(x)<0,解得:$\frac{1}{2}$<x<1,
∴增區(qū)間是$({0,\frac{1}{2}})和({1,+∞})$,減區(qū)間是$({\frac{1}{2},1})$;
(2)令f(x)=0,得:a=x2-3x+lnx,
由${f^'}(x)=2x-3+\frac{1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
$f(\frac{1}{2})=-\frac{5}{4}-ln2$,f(1)=-2,
∴當(dāng)$a∈(\frac{5}{4}-ln2,+∞)$有一個零點(diǎn);
當(dāng)$a=\frac{5}{4}-ln2$有兩個零點(diǎn);
當(dāng)$a∈(-2,\frac{5}{4}-ln2)$有三個零點(diǎn);
當(dāng)a=-2有兩個零點(diǎn);
當(dāng)a<-2有一個零點(diǎn).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)零點(diǎn),是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | -$\frac{7}{8}$ | D. | -$\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角一定是負(fù)角 | B. | 直角是象限角 | ||
C. | 鈍角是第二象限角 | D. | 終邊與始邊均相同的角一定相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$-$\frac{1}{2}$ | B. | $\frac{π}{4}$+$\frac{1}{2}$ | C. | $\frac{1}{2}$-$\frac{π}{4}$ | D. | $\frac{π}{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在yOz平面上 | B. | 在xOy平面上 | C. | 在xOz平面上 | D. | 在z平面上 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com