8.命題p:?x0∈N,x02<1,則¬p是(  )
A.?x0∈N,x02≥1B.?x0∈N,x02>1C.?x∈N,x2>1D.?x∈N,x2≥1

分析 利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題p:?x0∈N,x02<1,則¬p是?x∈N,x2≥1;
故選:D.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知|$\overrightarrow{OA}$|=3,$\overrightarrow{OA}$•$\overrightarrow{OB}$=17,則$\overrightarrow{OA}$•$\overrightarrow{AB}$=(  )
A.0B.14C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,圓C:x2+(y-1)2=1與y軸的上交點(diǎn)為A,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿圓C按逆時(shí)針?lè)较蜻\(yùn)動(dòng),設(shè)旋轉(zhuǎn)的角度∠ACP=x(0≤x≤2π),向量$\overrightarrow{OP}$在$\overrightarrow a$=(0,1)方向的射影為y(O為坐標(biāo)原點(diǎn)),則y關(guān)于x的函數(shù)y=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(1)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如表所示:
X15678
P0.4ab0.1
且X1的數(shù)字期望EX1=6,求a,b的值;
(2)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望.
(3)在(1)、(2)的條件下,若以“性價(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買性?說(shuō)明理由.
注:①產(chǎn)品的“性價(jià)比”=產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望/產(chǎn)品的零售價(jià);
②“性價(jià)比”大的產(chǎn)品更具可購(gòu)買性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.曲線C是由方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(y≥0)的弧線及方程為y=$\frac{1}{4}({x}^{2}-{a}^{2})$(y<0)的弧線構(gòu)成的封閉曲線,若點(diǎn)F1(-c,0),F(xiàn)2(-c,0),F(xiàn)(0,-3)為等邊三角形的三個(gè)頂點(diǎn)(其中c=$\sqrt{{a}^{2}-^{2}}$),橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{3}}{4}$.
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在過(guò)原點(diǎn)的直線l與曲線C交于不在x軸上的A,B兩點(diǎn),使得$\overrightarrow{{F}_{1}A}=\overrightarrow{B{F}_{2}}$,若存在,求出該直線的斜率,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsinθ=2acos θ(a>0),過(guò)點(diǎn)P(-2,-4)的直線L的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,t(為參數(shù)),直線L與曲線C分別交于M,N兩點(diǎn).
(1)寫出曲線C的平面直角坐標(biāo)方程和直線L的普通方程;
(2)若PM,MN,PN成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m,使得對(duì)于任意x∈M(M⊆D),有(x-m)∈D且f(x-m)≤f(x),則稱f(x)為M上的m度低調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的5度低調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍為-$\frac{\sqrt{5}}{2}$≤a≤$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)={log_{0.5}}[{{x^2}-2({2a-1})x+8}]$,a∈R.
(1)若使函數(shù)f(x)在[a,+∞)上為減函數(shù),求a的取值范圍;
(2)若關(guān)于x的方程f(x)=-1+log0.5(x+3)在[1,3]上僅有一解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=log2(x+1),點(diǎn)(x,y)在函數(shù)y=f(x)的圖象上運(yùn)動(dòng),點(diǎn)(t,s)在函數(shù)y=g(x)的圖象上運(yùn)動(dòng),并且滿足$t=\frac{x}{3},s=y$.
①求出y=g(x)的解析式.
②求出使g(x)≥f(x)成立的x的取值范圍.
③在②的范圍內(nèi)求y=g(x)-f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案