分析 運(yùn)用乘1法,可得$\frac{1}{a}$+$\frac{4}$=(a+b)($\frac{1}{a}$+$\frac{4}$),展開后運(yùn)用基本不等式,可得最小值.
解答 解:由a>0,b>0,且a+b=1,
則$\frac{1}{a}$+$\frac{4}$=(a+b)($\frac{1}{a}$+$\frac{4}$)
=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9,
當(dāng)且僅當(dāng)b=2a=$\frac{2}{3}$,取得最小值9.
故答案為:9.
點(diǎn)評 本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意等號成立的條件,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=-2cos2x | B. | g(x)=-2sin2x | C. | $g(x)=2sin(2x-\frac{π}{6})$ | D. | $g(x)=-2cos(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{10}$,10] | B. | ($\frac{1}{10}$,10) | C. | [$\frac{1}{10}$,1)∪(1,10] | D. | ($\frac{1}{10}$,10] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com